A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Overview

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0)

Per poter utilizzare il cluster il primo passo è abilitare l'account istituzionale per l'accesso ai sistemi del DISI. Se già attivo, avrai accesso con le credenziali istituzionali, anche in remoto (SSH), a tutte le macchine dei laboratori Ercolani e Ranzani.

La quota studente massima è per ora impostata a 400 MB. In caso di necessità di maggiore spazio potrai ricorrere alla creazione di una cartella in /public/ che viene di norma cancellata ogni prima domenica del mese.

/home/ utente e /public/ sono spazi di archiviazione condivisi tra le macchine, potrai dunque creare l'ambiente di esecuzione e i file necessari all'elaborazione sulla macchina SLURM (slurm.cs.unibo.it) da cui poi avviare il job che verrà eseguito sulle macchine dotate di GPU.

Istruzioni

Una possibile impostazione del lavoro potrebbe essere quella di creare un virtual environment Python inserendo all'interno tutto ciò di cui si ha bisogno e utilizzando pip per l'installazione dei moduli necessari. Le segnalo che per utilizzare Python 3 è necessario invocarlo esplicitamente in quanto sulle macchine il default è Python 2. Nel cluster sono presenti GPU Tesla pilotate con driver Nvidia v. 460.67 e librerie di computazione CUDA 11.2.1, quindi in caso di installazione di pytorch bisognerà utilizzare il comando

pip3 install torch==1.8.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html

Il cluster utilizza uno schedulatore SLURM (https://slurm.schedmd.com/overview.html) per la distribuzione dei job. Per sottomettere un job bisogna predisporre nella propria area di lavoro un file di configurzione SLURM (nell'esempio sotto lo abbiamo nominato script.sbatch).

Dopo le direttive SLURM è possibile inserire comandi di script (ad es. BASH).

#!/bin/bash
#SBATCH --job-name=nomejob
#SBATCH --mail-type=ALL
#SBATCH [email protected]
#SBATCH --time=01:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --output=nomeoutput
#SBATCH --gres=gpu:1

. bin/activate  # per attivare il virtual environment python

python test.py # per lanciare lo script python

Nell'esempio precedente:

  • L'istruzione da tenere immutata è --gres=gpu:1 (ogni nodo di computazione ha un'unica GPU a disposizione e deve essere attivata per poterla utilizzare).
  • Tutte le altre istruzioni di configurazione per SLURM possono essere personalizzate. Per la definizione di queste e altre direttive si rimanda alla documentazione ufficiale di SLURM (https://slurm.schedmd.com/sbatch.html).
  • Nell'esempio, dopo le istruzioni di configurazione di SLURM è stato invocato il programma.

Per poter avviare il job sulle macchine del cluster, è necessario:

  1. accedere via SSH alla macchina slurm.cs.unibo.it con le proprie credenziali;
  2. lanciare il comando sbatch <nomescript>.

Alcune note importanti:

  • saranno inviate e-mail per tutti gli evnti che riguardano il job lanciato, all'indirizzo specificato nelle istruzioni di configurazione (ad esempio al termine del job e nel caso di errori);
  • i risultati dell'elaborazione saranno presenti nel file <nomeoutput> indicato nelle istruzioni di configurazioni;
  • l'esecuzione sulle macchine avviene all'interno dello stesso path relativo che, essendo condiviso, viene visto anche dalle macchine dei laboratori e dalla macchina slurm.
Owner
PhD in Computer Science, Adjunct Professor @ CS department, Bologna
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022