Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Overview

Ranger-Deep-Learning-Optimizer


Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) in one optimizer.

quick note - Ranger21 is now in beta and is Ranger with a host of new improvements.

Recommend you compare results with Ranger21: https://github.com/lessw2020/Ranger21

Latest version 20.9.4 - updates Gradient Centralization to GC2 (thanks to GC developer) and removes addcmul_ deprecation warnings in PyTorch 1.60.



*Latest version is in ranger2020.py - looking at a few other additions before integrating into the main ranger.py.

What is Gradient Centralization? = "GC can be viewed as a projected gradient descent method with a constrained loss function. The Lipschitzness of the constrained loss function and its gradient is better so that the training process becomes more efficient and stable." Source paper: https://arxiv.org/abs/2004.01461v2
Ranger now uses Gradient Centralization by default, and applies it to all conv and fc layers by default. However, everything is customizable so you can test with and without on your own datasets. (Turn on off via "use_gc" flag at init).

Best training results - use a 75% flat lr, then step down and run lower lr for 25%, or cosine descend last 25%.


Per extensive testing - It's important to note that simply running one learning rate the entire time will not produce optimal results.
Effectively Ranger will end up 'hovering' around the optimal zone, but can't descend into it unless it has some additional run time at a lower rate to drop down into the optimal valley.

Full customization at init:


Ranger will now print out id and gc settings at init so you can confirm the optimizer settings at train time:

/////////////////////

Medium article with more info:
https://medium.com/@lessw/new-deep-learning-optimizer-ranger-synergistic-combination-of-radam-lookahead-for-the-best-of-2dc83f79a48d

Multiple updates: 1 - Ranger is the optimizer we used to beat the high scores for 12 different categories on the FastAI leaderboards! (Previous records all held with AdamW optimizer).

2 - Highly recommend combining Ranger with: Mish activation function, and flat+ cosine anneal training curve.

3 - Based on that, also found .95 is better than .90 for beta1 (momentum) param (ala betas=(0.95, 0.999)).

Fixes: 1 - Differential Group learning rates now supported. This was fix in RAdam and ported here thanks to @sholderbach. 2 - save and then load may leave first run weights stranded in memory, slowing down future runs = fixed.

Installation

Clone the repo, cd into it and install it in editable mode (-e option). That way, these is no more need to re-install the package after modification.

git clone https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
cd Ranger-Deep-Learning-Optimizer
pip install -e . 

Usage

from ranger import Ranger  # this is from ranger.py
from ranger import RangerVA  # this is from ranger913A.py
from ranger import RangerQH  # this is from rangerqh.py

# Define your model
model = ...
# Each of the Ranger, RangerVA, RangerQH have different parameters.
optimizer = Ranger(model.parameters(), **kwargs)

Usage and notebook to test are available here: https://github.com/lessw2020/Ranger-Mish-ImageWoof-5

Citing this work

We recommend you use the following to cite Ranger in your publications:

@misc{Ranger,
  author = {Wright, Less},
  title = {Ranger - a synergistic optimizer.},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer}}
}
Owner
Less Wright
Principal Software Engineer at Audere PM/Test/Dev at Microsoft Software Architect at X10 Wireless
Less Wright
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023