The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

Overview

Intel(R) Deep Learning Streamer Pipeline Zoo

| Getting Started | Tasks and Pipelines | Measurement Definitions | Core Examples | Xeon Examples | Pick and Go Use Case | Advanced Examples | Pipebench Reference | Measurement Output |

The DL Streamer Pipeline Zoo is a catalog of media and media analytics pipelines optimized for Intel hardware. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace.

Pipelines are organized according to the task they perform (what types of input they accept and what types of output they generate). Tasks and pipelines are defined in a platform and framework independent way to allow implementations in a variety of frameworks and for multiple platform targets.

diagram

Features Include:

Simple command line interface A single entrypoint for downloading and running media analytics pipelines along with media and model dependencies
DL Streamer Pipeline Runner Pipeline implementations and optimizations using the DL Streamer Pipeline Framework
Platform specific settings Pipeline runner settings tuned for optimal performance on different platform types (e.g. core, xeon)
Measurement Settings Settings for measuring different scenarios including single stream throughput and stream density. Settings can be customized and saved for reuse.
Containerized environment Dockerfiles, build and run scripts for launching a reproducable environment

IMPORTANT:

The DL Streamer Pipeline Zoo is provided as a set of tools for system evaluation and benchmarking and is not intended for deployment into production environments without modification.

The project is pre-production and under active development. Please expect breaking changes and use tagged versions for stable functionality.

Getting Started

Prerequisites

Docker The Pipeline Zoo requires Docker for it's build, development, and runtime environments. Please install the latest version for your platform.
bash The Pipeline Zoo build and run scripts require bash and have been tested on systems using versions greater than or equal to: GNU bash, version 4.3.48(1)-release (x86_64-pc-linux-gnu).

Installation

  1. Clone Repository
    git clone https://github.com/dlstreamer/pipeline-zoo.git pipeline-zoo
    
  2. Build Pipeline Zoo Environment
    ./pipeline-zoo/tools/docker/build.sh 
    
    Output:
    Successfully built 113352079483
    Successfully tagged media-analytics-pipeline-zoo-bench:latest
    
  3. Launch Pipeline Zoo
    ./pipeline-zoo/tools/docker/run.sh 
    

Pipline Zoo Commands

List Pipelines

Command:

pipebench list

Output:

+--------------------------------------------+-----------------------+----------------------------+------------+
| Pipeline                                   | Task                  | Models                     | Runners    |
+============================================+=======================+============================+============+
| decode-h265                                | decode-vpp            |                            | dlstreamer |
|                                            |                       |                            | mockrun    |
+--------------------------------------------+-----------------------+----------------------------+------------+
| decode-h264-bgra                           | decode-vpp            |                            | dlstreamer |
|                                            |                       |                            | mockrun    |
+--------------------------------------------+-----------------------+----------------------------+------------+
| od-h265-ssd-mobilenet-v1-coco              | object-detection      | ssd_mobilenet_v1_coco_INT8 | dlstreamer |
+--------------------------------------------+-----------------------+----------------------------+------------+
| od-h264-ssd-mobilenet-v1-coco              | object-detection      | ssd_mobilenet_v1_coco      | dlstreamer |
|                                            |                       |                            | mockrun    |
+--------------------------------------------+-----------------------+----------------------------+------------+
| oc-h265-full_frame-resnet-50-tf            | object-classification | full_frame                 | dlstreamer |
|                                            |                       | resnet-50-tf               | mockrun    |
+--------------------------------------------+-----------------------+----------------------------+------------+
| oc-h264-full_frame-resnet-50-tf            | object-classification | full_frame                 | dlstreamer |
|                                            |                       | resnet-50-tf               | mockrun    |
+--------------------------------------------+-----------------------+----------------------------+------------+
| oc-h264-ssd-mobilenet-v1-coco-resnet-50-tf | object-classification | ssd_mobilenet_v1_coco      | dlstreamer |
|                                            |                       | resnet-50-tf               | mockrun    |
+--------------------------------------------+-----------------------+----------------------------+------------+
| oc-h265-ssd-mobilenet-v1-coco-resnet-50-tf | object-classification | ssd_mobilenet_v1_coco      | dlstreamer |
|                                            |                       | resnet-50-tf               | mockrun    |
+--------------------------------------------+-----------------------+----------------------------+------------+

Download Pipeline

Command:

pipebench download od-h264-ssd-mobilenet-v1-coco

Example Output Tree:

- pipeline-zoo/
+ doc/
+ media/
+ models/
+ pipelines/
+ runners/
+ tools/
- workspace/
 - od-h264-ssd-mobilenet-v1-coco/
   - media/
     - video/
       + Pexels-Videos-1388365/
       + person-bicycle-car-detection/
   - models/
     - ssd_mobilenet_v1_coco/
       + FP16/
       + FP32/
       + ssd_mobilenet_v1_coco_2018_01_28/
     - ssd_mobilenet_v1_coco_INT8/
       + FP16-INT8/
   - runners/
     + dlstreamer/
     + mockrun/
   README.md
   dlstreamer.core.runner-settings.yml
   dlstreamer.density.core.runner-settings.yml
   dlstreamer.density.dgpu.runner-settings.yml
   dlstreamer.density.runner-settings.yml
   dlstreamer.density.xeon.runner-settings.yml
   dlstreamer.dgpu.runner-settings.yml
   dlstreamer.runner-settings.yml
   dlstreamer.xeon.runner-settings.yml
   media.list.yml
   mockrun.runner-settings.yml
   models.list.yml
   od-h264-ssd-mobilenet-v1-coco.pipeline.yml

Measure Single Stream Throughput

Command:

pipebench run od-h264-ssd-mobilenet-v1-coco

Example Output:

 Pipeline:
	od-h264-ssd-mobilenet-v1-coco

 Runner:
	dlstreamer
 	dlstreamer.runner-settings.yml

 Media:
	video/person-bicycle-car-detection

 Measurement:
	throughput
 	throughput.measurement-settings.yml

 Output Directory:
	/home/pipeline-zoo/workspace/od-h264-ssd-mobilenet-v1-coco/measurements/throughput/dlstreamer/run-0000

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
     0000      0000       0001     0.0000    0.0000    0.0000     0.0000
======================================================================== 

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
     0000      0001       0001   130.3469  130.3469  130.3469   130.3469
======================================================================== 

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
     0000      0001       0001   128.9403  128.9403  128.9403   128.9403
======================================================================== 

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
     0000      0001       0001   129.5578  129.5578  129.5578   129.5578
======================================================================== 

...

   
    
...

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
     0000      0001       0001   126.2640  126.2640  126.2640   126.2640
======================================================================== 

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
     0000      0001       0001   125.8236  125.8236  125.8236   125.8236
======================================================================== 

Pipeline                       Runner      Streams: 1
-----------------------------  ----------  ---------------------------------------------------------
od-h264-ssd-mobilenet-v1-coco  dlstreamer  Min: 125.8236 Max: 125.8236 Avg: 125.8236 Total: 125.8236


   

Measure Stream Density

Command:

 pipebench run --measure density od-h264-ssd-mobilenet-v1-coco

Example Output:

 Pipeline:
	od-h264-ssd-mobilenet-v1-coco

 Runner:
	dlstreamer
 	dlstreamer.density.runner-settings.yml

 Media:
	video/person-bicycle-car-detection

 Measurement:
	density
 	density.measurement-settings.yml

 Output Directory:
	/home/pipeline-zoo/workspace/od-h264-ssd-mobilenet-v1-coco/measurements/density/dlstreamer/run-0000

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
      PRE      0001       0001   121.7170  121.7170  121.7170   121.7170
======================================================================== 

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
      PRE      0001       0001   128.3342  128.3342  128.3342   128.3342
======================================================================== 

...

   
    
...

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
     0001      0003       0003    30.0000   30.0038   30.0110    90.0115
======================================================================== 

========================================================================
Iteration   Streams  Processes    Minimum   Average   Maximum      Total
========================================================================
     0001      0003       0003    29.9868   29.9959   30.0115    89.9878
======================================================================== 

Pipeline                       Runner      Streams: 4                                              Streams: 3
-----------------------------  ----------  ------------------------------------------------------  -----------------------------------------------------
od-h264-ssd-mobilenet-v1-coco  dlstreamer  Min: 28.4167 Max: 28.5507 Avg: 28.4844 Total: 113.9374  Min: 29.9868 Max: 30.0115 Avg: 29.9959 Total: 89.9878


   
You might also like...
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Use AI to generate a optimized stock portfolio
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

Supervised Contrastive Learning for Downstream Optimized Sequence Representations
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Comments
  • Bump protobuf from 3.19.4 to 3.19.5 in /tools/pipebench

    Bump protobuf from 3.19.4 to 3.19.5 in /tools/pipebench

    Bumps protobuf from 3.19.4 to 3.19.5.

    Release notes

    Sourced from protobuf's releases.

    Protocol Buffers v3.19.5

    C++

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v0.0.7)
  • v0.0.7(Jul 15, 2022)

    Intel® Deep Learning Streamer (Intel® DL Streamer) Pipeline Zoo

    The Intel® DL Streamer Pipeline Zoo is a catalog of media and media analytics pipelines optimized for Intel® hardware. It includes tools for downloading pipelines and their dependencies and tools for measuring their performance.

    Pipelines are organized according to the task they perform (what types of input they accept and what types of output they generate). Tasks and pipelines are defined in a platform and framework independent way to allow implementations in a variety of frameworks and for multiple platform targets.

    IMPORTANT:

    The Intel® DL Streamer Pipeline Zoo is provided as a set of tools for system evaluation and benchmarking and is not intended for deployment into production environments without modification.

    The project is pre-production and under active development. Please expect breaking changes and use tagged versions for stable functionality.

    For the details of supported platforms, please refer to System Requirements section.

    New in this Release

    | Title | High-level description | |----------------|---------------------------------| | Alignment with Intel® DL Streamer Pipeline Framework 2022.1 | Pipeline Zoo now uses the 2022.1 image of Intel® DL Streamer Pipeline Framework as its base image | | Compatibility with OpenVINO™ Toolkit 2022.1 | Pipeline Zoo has been updated to use the 2022.1 version of the OpenVINO™ Toolkit | | New models added | New object detection and object classification pipelines were added. These are based on the following models:

      * yolov4
      * efficient-b0
      * ssdlite-mobilenet-v2
    | | Platform support updates | Pipeline Zoo has added full support for Alder Lake and Tiger Lake platforms | | Improved Benchmarking | Time to compute stream density on high density cores was significantly reduced |

    Changed in this Release

    • Naming aligned with Intel® DL Streamer product version

    Full Changelog: https://github.com/dlstreamer/pipeline-zoo/compare/v0.0.6...v0.0.7

    System Requirements

    Please refer to Intel® DL Streamer documentation.

    Legal Information

    No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

    Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

    This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

    The products and services described may contain defects or errors which may cause deviations from published specifications. Current characterized errata are available on request.

    Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

    *Other names and brands may be claimed as the property of others.

    © 2022 Intel Corporation.

    Source code(tar.gz)
    Source code(zip)
  • v0.0.6(Jan 25, 2022)

    Intel(R) Deep Learning Streamer Pipeline Zoo

    The DL Streamer Pipeline Zoo is a catalog of media and media analytics pipelines optimized for Intel hardware. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace.

    Pipelines are organized according to the task they perform (what types of input they accept and what types of output they generate). Tasks and pipelines are defined in a platform and framework independent way to allow implementations in a variety of frameworks and for multiple platform targets.

    IMPORTANT:

    The DL Streamer Pipeline Zoo is provided as a set of tools for system evaluation and benchmarking and is not intended for deployment into production environments without modification.

    The project is pre-production and under active development. Please expect breaking changes and use tagged versions for stable functionality.

    Features Include:

      |   -- | -- Simple command line interface | A single entrypoint for downloading and running media analytics pipelines along with media and model dependencies DL Streamer Pipeline Runner | Pipeline implementations and optimizations using the DL Streamer Pipeline Framework Platform specific settings | Pipeline runner settings tuned for optimal performance on different platform types (e.g. core, xeon) Measurement Settings | Settings for measuring different scenarios including single stream throughput and stream density. Settings can be customized and saved for reuse. Containerized environment | Dockerfiles, build and run scripts for launching a reproducable environment

    Release v0.0.6

    This release contains minor bug fixes and enhancements:

    • duration expands number of frames in media beyond 60 seconds if given (calculated at 30 fps)
    • added dog_bark media for object classification

    What's Changed

    • Public staging by @nnshah1 in https://github.com/dlstreamer/pipeline-zoo/pull/1

    New Contributors

    • @nnshah1 made their first contribution in https://github.com/dlstreamer/pipeline-zoo/pull/1

    Full Changelog: https://github.com/dlstreamer/pipeline-zoo/compare/v0.0.5...v0.0.6

    Source code(tar.gz)
    Source code(zip)
  • v0.0.5(Dec 24, 2021)

    Intel(R) Deep Learning Streamer Pipeline Zoo

    The DL Streamer Pipeline Zoo is a catalog of media and media analytics pipelines optimized for Intel hardware. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace.

    Pipelines are organized according to the task they perform (what types of input they accept and what types of output they generate). Tasks and pipelines are defined in a platform and framework independent way to allow implementations in a variety of frameworks and for multiple platform targets.

    IMPORTANT:

    The DL Streamer Pipeline Zoo is provided as a set of tools for system evaluation and benchmarking and is not intended for deployment into production environments without modification.

    The project is pre-production and under active development. Please expect breaking changes and use tagged versions for stable functionality.

    Features Include:

      |   -- | -- Simple command line interface | A single entrypoint for downloading and running media analytics pipelines along with media and model dependencies DL Streamer Pipeline Runner | Pipeline implementations and optimizations using the DL Streamer Pipeline Framework Platform specific settings | Pipeline runner settings tuned for optimal performance on different platform types (e.g. core, xeon) Measurement Settings | Settings for measuring different scenarios including single stream throughput and stream density. Settings can be customized and saved for reuse. Containerized environment | Dockerfiles, build and run scripts for launching a reproducable environment

    Initial Preview Release (v0.0.5)

    The initial release contains support for the following tasks and pipelines using a DL Streamer Pipeline Runner:

    • Object Detection
      • od-h264-ssd-mobilenet-v1-coco
      • od-h265-ssd-mobilenet-v1-coco
    • Object Classification
      • oc-h264-full-frame-resnet-50-tf
      • oc-h265-full-frame-resnet-50-tf
      • oc-h264-ssd-mobilenet-v1-coco-resnet-50-tf -oc-h265-ssd-mobilenet-v1-coco-resnet-50-tf
    • Decode VPP
      • decode-h265
      • decode-h264-bgra

    And provides settings tuned for performance on:

    • Xeon: Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz.
    • Core: 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GH
    Source code(tar.gz)
    Source code(zip)
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023