This code provides various models combining dilated convolutions with residual networks

Related tags

Deep Learningdrn
Overview

Overview

This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less parameters than ResNet on image classification and semantic segmentation.

If you find this code useful for your publications, please consider citing

@inproceedings{Yu2017,
    title     = {Dilated Residual Networks},
    author    = {Fisher Yu and Vladlen Koltun and Thomas Funkhouser},
    booktitle = {Computer Vision and Pattern Recognition (CVPR)},
    year      = {2017},
}

@inproceedings{Yu2016,
    title     = {Multi-scale context aggregation by dilated convolutions},
    author    = {Yu, Fisher and Koltun, Vladlen},
    booktitle = {International Conference on Learning Representations (ICLR)},
    year      = {2016}
}

Code Highlights

  • The pretrained model can be loaded using Pytorch model zoo api. Example here.
  • Pytorch based image classification and semantic image segmentation.
  • BatchNorm synchronization across multipe GPUs.
  • High-resolution class activiation maps for state-of-the-art weakly supervised object localization.
  • DRN-D-105 gets 76.3% mIoU on Cityscapes with only fine training annotation and no context module.

Image Classification

Image classification is meant to be a controlled study to understand the role of high resolution feature maps in image classification and the class activations rising from it. Based on the investigation, we are able to design more efficient networks for learning high-resolution image representation. They have practical usage in semantic image segmentation, as detailed in image segmentation section.

Models

Comparison of classification error rate on ImageNet validation set and numbers of parameters. It is evaluated on single center 224x224 crop from resized images whose shorter side is 256-pixel long.

Name Top-1 Top-5 Params
ResNet-18 30.4% 10.8% 11.7M
DRN-A-18 28.0% 9.5% 11.7M
DRN-D-22 25.8% 8.2% 16.4M
DRN-C-26 24.9% 7.6% 21.1M
ResNet-34 27.7% 8.7% 21.8M
DRN-A-34 24.8% 7.5% 21.8M
DRN-D-38 23.8% 6.9% 26.5M
DRN-C-42 22.9% 6.6% 31.2M
ResNet-50 24.0% 7.0% 25.6M
DRN-A-50 22.9% 6.6% 25.6M
DRN-D-54 21.2% 5.9% 35.8M
DRN-C-58 21.7% 6.0% 41.6M
ResNet-101 22.4% 6.2% 44.5M
DRN-D-105 20.6% 5.5% 54.8M
ResNet-152 22.2% 6.2% 60.2M

The figure below groups the parameter and error rate comparison based on netwok structures.

comparison

Training and Testing

The code is written in Python using Pytorch. I started with code in torchvision. Please check their license as well if copyright is your concern. Software dependency:

  • Python 3
  • Pillow
  • pytorch
  • torchvision

Note If you want to train your own semantic segmentation model, make sure your Pytorch version is greater than 0.2.0 or includes commit 78020a.

Go to this page to prepare ImageNet 1K data.

To test a model on ImageNet validation set:

python3 classify.py test --arch drn_c_26 -j 4 
   
     --pretrained

   

To train a new model:

python3 classify.py train --arch drn_c_26 -j 8 
   
     --epochs 120

   

Besides drn_c_26, we also provide drn_c_42 and drn_c_58. They are in DRN-C family as described in Dilated Residual Networks. DRN-D models are simplified versions of DRN-C. Their code names are drn_d_22, drn_d_38, drn_d_54, and drn_d_105.

Semantic Image Segmentataion

Models

Comparison of mIoU on Cityscapes and numbers of parameters.

Name mIoU Params
DRN-A-50 67.3% 25.6M
DRN-C-26 68.0% 21.1M
DRN-C-42 70.9% 31.2M
DRN-D-22 68.0% 16.4M
DRN-D-38 71.4% 26.5M
DRN-D-105* 75.6% 54.8M

*trained with poly learning rate, random scaling and rotations.

DRN-D-105 gets 76.3% mIoU on Cityscapes testing set with multi-scale testing, poly learning rate and data augmentation with random rotation and scaling in training. Full results are here.

Prepare Data

The segmentation image data folder is supposed to contain following image lists with names below:

  • train_images.txt
  • train_labels.txt
  • val_images.txt
  • val_labels.txt
  • test_images.txt

The code will also look for info.json in the folder. It contains mean and std of the training images. For example, below is info.json used for training on Cityscapes.

{
    "mean": [
        0.290101,
        0.328081,
        0.286964
    ],
    "std": [
        0.182954,
        0.186566,
        0.184475
    ]
}

Each line in the list is a path to an input image or its label map relative to the segmentation folder.

For example, if the data folder is "/foo/bar" and train_images.txt in it contains

leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png
leftImg8bit/train/aachen/aachen_000001_000019_leftImg8bit.png

and train_labels.txt contrains

gtFine/train/aachen/aachen_000000_000019_gtFine_trainIds.png
gtFine/train/aachen/aachen_000001_000019_gtFine_trainIds.png

Then the first image path is expected at

/foo/bar/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png

and its label map is at

/foo/bar/gtFine/train/aachen/aachen_000000_000019_gtFine_trainIds.png

In training phase, both train_* and val_* are assumed to be in the data folder. In validation phase, only val_images.txt and val_labels.txt are needed. In testing phase, when there are no available labels, only test_images.txt is needed. segment.py has a command line option --phase and the corresponding acceptable arguments are train, val, and test.

To set up Cityscapes data, please check this document.

Optimization Setup

The current segmentation models are trained on basic data augmentation (random crops + flips). The learning rate is changed by steps, where it is decreased by a factor of 10 at each step.

Training

To train a new model, use

python3 segment.py train -d 
   
     -c 
    
      -s 896 \
    --arch drn_d_22 --batch-size 32 --epochs 250 --lr 0.01 --momentum 0.9 \
    --step 100

    
   

category_number is the number of categories in segmentation. It is 19 for Cityscapes and 11 for Camvid. The actual label maps should contain values in the range of [0, category_number). Invalid pixels can be labeled as 255 and they will be ignored in training and evaluation. Depends on the batch size, lr and momentum can be 0.01/0.9 or 0.001/0.99.

If you want to train drn_d_105 to achieve best results on cityscapes dataset, you need to turn on data augmentation and use poly learning rate:

python3 segment.py train -d 
   
     -c 19 -s 840 --arch drn_d_105 --random-scale 2 --random-rotate 10 --batch-size 16 --epochs 500 --lr 0.01 --momentum 0.9 -j 16 --lr-mode poly --bn-sync

   

Note:

  • If you use 8 GPUs for 16 crops per batch, the memory for each GPU is more than 12GB. If you don't have enough GPU memory, you can try smaller batch size or crop size. Smaller crop size usually hurts the performance more.
  • Batch normalization synchronization across multiple GPUs is necessary to train very deep convolutional networks for semantic segmentation. We provide an implementation as a pytorch extenstion in lib/. However, it is not for the faint-hearted to build from scratch, although an Makefile is provided. So a built binary library for 64-bit Ubuntu is provided. It is tested on Ubuntu 16.04. Also remember to add lib/ to your PYTHONPATH.

Testing

Evaluate models on testing set or any images without ground truth labels using our related pretrained model:

python3 segment.py test -d 
   
     -c 
    
      --arch drn_d_22 \
    --pretrained 
     
       --phase test --batch-size 1

     
    
   

You can download the pretrained DRN models on Cityscapes here: http://go.yf.io/drn-cityscapes-models.

If you want to evaluate a checkpoint from your own training, use --resume instead of --pretrained:

python3 segment.py test -d 
   
     -c 
    
      --arch drn_d_22 \
    --resume 
     
       --phase test --batch-size 1

     
    
   

You can also turn on multi-scale testing for better results by adding --ms:

python3 segment.py test -d 
   
     -c 
    
      --arch drn_d_105 \
    --resume 
     
       --phase val --batch-size 1 --ms

     
    
   
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023