A small library for creating and manipulating custom JAX Pytree classes

Overview

Treeo

A small library for creating and manipulating custom JAX Pytree classes

  • Light-weight: has no dependencies other than jax.
  • Compatible: Treeo Tree objects are compatible with any jax function that accepts Pytrees.
  • Standards-based: treeo.field is built on top of python's dataclasses.field.
  • Flexible: Treeo is compatible with both dataclass and non-dataclass classes.

Treeo lets you easily create class-based Pytrees so your custom objects can easily interact seamlessly with JAX. Uses of Treeo can range from just creating simple simple JAX-aware utility classes to using it as the core abstraction for full-blown frameworks. Treeo was originally extracted from the core of Treex and shares a lot in common with flax.struct.

Documentation | User Guide

Installation

Install using pip:

pip install treeo

Basics

With Treeo you can easily define your own custom Pytree classes by inheriting from Treeo's Tree class and using the field function to declare which fields are nodes (children) and which are static (metadata):

import treeo as to

@dataclass
class Person(to.Tree):
    height: jnp.array = to.field(node=True) # I am a node field!
    name: str = to.field(node=False) # I am a static field!

field is just a wrapper around dataclasses.field so you can define your Pytrees as dataclasses, but Treeo fully supports non-dataclass classes as well. Since all Tree instances are Pytree they work with the various functions from thejax library as expected:

p = Person(height=jnp.array(1.8), name="John")

# Trees can be jitted!
jax.jit(lambda person: person)(p) # Person(height=array(1.8), name='John')

# Trees can be mapped!
jax.tree_map(lambda x: 2 * x, p) # Person(height=array(3.6), name='John')

Kinds

Treeo also include a kind system that lets you give semantic meaning to fields (what a field represents within your application). A kind is just a type you pass to field via its kind argument:

class Parameter: pass
class BatchStat: pass

class BatchNorm(to.Tree):
    scale: jnp.ndarray = to.field(node=True, kind=Parameter)
    mean: jnp.ndarray = to.field(node=True, kind=BatchStat)

Kinds are very useful as a filtering mechanism via treeo.filter:

model = BatchNorm(...)

# select only Parameters, mean is filtered out
params = to.filter(model, Parameter) # BatchNorm(scale=array(...), mean=Nothing)

Nothing behaves like None in Python, but it is a special value that is used to represent the absence of a value within Treeo.

Treeo also offers the merge function which lets you rejoin filtered Trees with a logic similar to Python dict.update but done recursively:

def loss_fn(params, model, ...):
    # add traced params to model
    model = to.merge(model, params)
    ...

# gradient only w.r.t. params
params = to.filter(model, Parameter) # BatchNorm(scale=array(...), mean=Nothing)
grads = jax.grad(loss_fn)(params, model, ...)

For a more in-depth tour check out the User Guide.

Examples

A simple Tree

from dataclasses import dataclass
import treeo as to

@dataclass
class Character(to.Tree):
    position: jnp.ndarray = to.field(node=True)    # node field
    name: str = to.field(node=False, opaque=True)  # static field

character = Character(position=jnp.array([0, 0]), name='Adam')

# character can freely pass through jit
@jax.jit
def update(character: Character, velocity, dt) -> Character:
    character.position += velocity * dt
    return character

character = update(character velocity=jnp.array([1.0, 0.2]), dt=0.1)

A Stateful Tree

from dataclasses import dataclass
import treeo as to

@dataclass
class Counter(to.Tree):
    n: jnp.array = to.field(default=jnp.array(0), node=True) # node
    step: int = to.field(default=1, node=False) # static

    def inc(self):
        self.n += self.step

counter = Counter(step=2) # Counter(n=jnp.array(0), step=2)

@jax.jit
def update(counter: Counter):
    counter.inc()
    return counter

counter = update(counter) # Counter(n=jnp.array(2), step=2)

# map over the tree

Full Example - Linear Regression

import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np

import treeo as to


class Linear(to.Tree):
    w: jnp.ndarray = to.node()
    b: jnp.ndarray = to.node()

    def __init__(self, din, dout, key):
        self.w = jax.random.uniform(key, shape=(din, dout))
        self.b = jnp.zeros(shape=(dout,))

    def __call__(self, x):
        return jnp.dot(x, self.w) + self.b


@jax.value_and_grad
def loss_fn(model, x, y):
    y_pred = model(x)
    loss = jnp.mean((y_pred - y) ** 2)

    return loss


def sgd(param, grad):
    return param - 0.1 * grad


@jax.jit
def train_step(model, x, y):
    loss, grads = loss_fn(model, x, y)
    model = jax.tree_map(sgd, model, grads)

    return loss, model


x = np.random.uniform(size=(500, 1))
y = 1.4 * x - 0.3 + np.random.normal(scale=0.1, size=(500, 1))

key = jax.random.PRNGKey(0)
model = Linear(1, 1, key=key)

for step in range(1000):
    loss, model = train_step(model, x, y)
    if step % 100 == 0:
        print(f"loss: {loss:.4f}")

X_test = np.linspace(x.min(), x.max(), 100)[:, None]
y_pred = model(X_test)

plt.scatter(x, y, c="k", label="data")
plt.plot(X_test, y_pred, c="b", linewidth=2, label="prediction")
plt.legend()
plt.show()
Comments
  • Use field kinds within tree_map

    Use field kinds within tree_map

    Firstly, thanks for creating Treeo - it's a fantastic package.

    Is there a way to use methods defined within a field's kind object within a tree_map call? For example, consider the following MWE

    import jax.numpy as jnp
    
    class Parameter:
        def transform(self):
            return jnp.exp(self)
    
    
    @dataclass
    class Model(to.Tree):
        lengthscale: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=Parameter
        )
    

    is there a way that I could do something similar to the following pseudocode snippet:

    m = Model()
    jax.tree_map(lamdba x: x.transform(), to.filter(m, Parameter))
    
    opened by thomaspinder 10
  • Stacking of Treeo.Tree

    Stacking of Treeo.Tree

    I'm running into some issues when trying to stack a list of Treeo.Tree objects into a single object. I've made a short example:

    from dataclasses import dataclass
    
    import jax
    import jax.numpy as jnp
    import treeo as to
    
    @dataclass
    class Person(to.Tree):
        height: jnp.array = to.field(node=True) # I am a node field!
        age_static: jnp.array = to.field(node=False) # I am a static field!, I should not be updated.
        name: str = to.field(node=False) # I am a static field!
    
    persons = [
        Person(height=jnp.array(1.8), age_static=jnp.array(25.), name="John"),
        Person(height=jnp.array(1.7), age_static=jnp.array(100.), name="Wald"),
        Person(height=jnp.array(2.1), age_static=jnp.array(50.), name="Karen")
    ]
    
    # Stack (struct of arrays instead of list of structs)
    jax.tree_map(lambda *values: jnp.stack(values, axis=0), *persons)
    

    However, this fails with the following exception:

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Cell In[1], line 18
         11     name: str = to.field(node=False) # I am a static field!
         13 persons = [
         14     Person(height=jnp.array(1.8), age_static=jnp.array(25.), name="John"),
         15     Person(height=jnp.array(1.7), age_static=jnp.array(100.), name="Wald"),
         16     Person(height=jnp.array(2.1), age_static=jnp.array(50.), name="Karen")
         17 ]
    ---> 18 jax.tree_map(lambda *values: jnp.stack(values, axis=0), *persons)
    
    File ~/workspace/lcms_polymer_model/env/env_conda_local/lcms_polymer_model_env/lib/python3.10/site-packages/jax/_src/tree_util.py:199, in tree_map(f, tree, is_leaf, *rest)
        166 """Maps a multi-input function over pytree args to produce a new pytree.
        167 
        168 Args:
       (...)
        196   [[5, 7, 9], [6, 1, 2]]
        197 """
        198 leaves, treedef = tree_flatten(tree, is_leaf)
    --> 199 all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
        200 return treedef.unflatten(f(*xs) for xs in zip(*all_leaves))
    
    File ~/workspace/lcms_polymer_model/env/env_conda_local/lcms_polymer_model_env/lib/python3.10/site-packages/jax/_src/tree_util.py:199, in <listcomp>(.0)
        166 """Maps a multi-input function over pytree args to produce a new pytree.
        167 
        168 Args:
       (...)
        196   [[5, 7, 9], [6, 1, 2]]
        197 """
        198 leaves, treedef = tree_flatten(tree, is_leaf)
    --> 199 all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
        200 return treedef.unflatten(f(*xs) for xs in zip(*all_leaves))
    
    ValueError: Mismatch custom node data: {'_field_metadata': {'height': <treeo.types.FieldMetadata object at 0x7fb8b898ba00>, 'age_static': <treeo.types.FieldMetadata object at 0x7fb8b90c0a90>, 'name': <treeo.types.FieldMetadata object at 0x7fb8b8bf9db0>, '_field_metadata': <treeo.types.FieldMetadata object at 0x7fb8b89b56f0>, '_factory_fields': <treeo.types.FieldMetadata object at 0x7fb8b89b5750>, '_default_field_values': <treeo.types.FieldMetadata object at 0x7fb8b89b5660>, '_subtrees': <treeo.types.FieldMetadata object at 0x7fb8b89b5720>}, 'age_static': DeviceArray(25., dtype=float32, weak_type=True), 'name': 'John'} != {'_field_metadata': {'height': <treeo.types.FieldMetadata object at 0x7fb8b898ba00>, 'age_static': <treeo.types.FieldMetadata object at 0x7fb8b90c0a90>, 'name': <treeo.types.FieldMetadata object at 0x7fb8b8bf9db0>, '_field_metadata': <treeo.types.FieldMetadata object at 0x7fb8b89b56f0>, '_factory_fields': <treeo.types.FieldMetadata object at 0x7fb8b89b5750>, '_default_field_values': <treeo.types.FieldMetadata object at 0x7fb8b89b5660>, '_subtrees': <treeo.types.FieldMetadata object at 0x7fb8b89b5720>}, 'age_static': DeviceArray(100., dtype=float32, weak_type=True), 'name': 'Wald'}; value: Person(height=DeviceArray(1.7, dtype=float32, weak_type=True), age_static=DeviceArray(100., dtype=float32, weak_type=True), name='Wald').
    

    Versions used:

    • JAX: 0.3.20
    • Treeo: 0.0.10

    From a certain perspective this is expected because jax.tree_map does not apply to static (node=False) fields. So in this sense, this might not be really an issue with Treeo. However, I'm looking for some guidance on how to still be able to stack objects like this with static fields. Has anyone has tried something similar and come up with a nice solution?

    opened by peterroelants 3
  • Jitting twice for a class method

    Jitting twice for a class method

    import jax
    import jax.numpy as jnp
    import treeo as to
    
    class A(to.Tree):
        X: jnp.array = to.field(node=True)
        
        def __init__(self):
            self.X = jnp.ones((50, 50))
    
        @jax.jit
        def f(self, Y):
            return jnp.sum(Y ** 2) * jnp.sum(self.X ** 2)
    
    Y = jnp.ones(2)
    for i in range(5):
        print(A.f._cache_size())
        a = A()
        a.f(Y)
    

    The output of the above is 0 1 2 2 2 with jax 0.3.15. No idea what's happening. It seems to work fine with 0.3.10 and the output is 0 1 1 1 1. Thanks.

    opened by pipme 2
  • Change Mutable API

    Change Mutable API

    Changes

    • Previously self.mutable(*args, method=method, **kwargs)
    • Is now...... self.mutable(method=method)(*args, **kwargs)
    • Opaque API is removed
    • inplace argument is now only available for apply.
    • Immutable.{mutable, toplevel_mutable} methods are removed.
    fix 
    opened by cgarciae 1
  • Improve mutability support

    Improve mutability support

    Changes

    • Fixes issues with immutability in compact context
    • The make_mutable context manager and the mutable function now expose a toplevel_only: bool argument.
    • Adds a _get_unbound_method private function in utils.
    feature 
    opened by cgarciae 1
  • Bug Fixes from 0.0.11

    Bug Fixes from 0.0.11

    Changes

    • Fixes an issues that disabled mutability inside __init__ for Immutable classes when TreeMeta's `constructor method is overloaded.
    • Fixes the Apply.apply mixin method.

    Closes cgarciae/treex#68

    fix 
    opened by cgarciae 1
  • Adds support for immutable Trees

    Adds support for immutable Trees

    Changes

    • Adds an Immutable mixin that can make Trees effectively immutable (as far as python permits).
    • Immutable contains the .replace and .mutable methods that let you manipulate state in a functionally pure fashion.
    • Adds the mutable function transformation / decorator which lets you turn function that perform mutable operation into pure functions.
    opened by cgarciae 1
  • Add the option of using add_field_info inside map

    Add the option of using add_field_info inside map

    This PR addresses the comments made in #2 . An additional argument is created within map to allow for a field_info boolean flag to passed. When true, jax.tree_map is carried out under the with add_field_info(): context manager.

    Tests have been added to test for correct function application on classes contain Trees with mixed kind types.

    A brief section has been added to the documentation to reflect the above changes.

    opened by thomaspinder 1
  • Get all unique kinds

    Get all unique kinds

    Hi,

    Is there a way that I can get a list of all the unique kinds within a nested dataclass? For example:

    class KindOne: pass
    class KindTwo: pass
    
    @dataclass
    class SubModel(to.Tree):
        parameter: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=KindOne
        )
    
    
    @dataclass 
    class Model(to.Tree):
        parameter: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=KindTwo
        )
    
    m = Model()
    
    m.unique_kinds() # [KindOne, KindTwo]
    
    opened by thomaspinder 1
  • Compact

    Compact

    Changes

    • Removes opaque_is_equal, same functionality available through opaque.
    • Adds compact decorator that enable the definition of Tree subnodes at runtime.
    • Adds the Compact mixin that adds the first_run property and the get_field method.
    opened by cgarciae 0
  • Relax jax/jaxlib version constraints

    Relax jax/jaxlib version constraints

    Now that jax 0.3.0 and jaxlib 0.3.0 have been released the version constraints in pyproject.toml are outdated.

    https://github.com/cgarciae/treeo/blob/a402f3f69557840cfbee4d7804964b8e2c47e3f7/pyproject.toml#L16-L17

    This corresponds to the version constraint jax<0.3.0,>=0.2.18 (https://python-poetry.org/docs/dependency-specification/#caret-requirements). Now that jax v0.3.0 has been released (https://github.com/google/jax/releases/tag/jax-v0.3.0) this doesn't work with the latest version. I think the same applies to jaxlib as well, since it also got upgraded to v0.3.0 (https://github.com/google/jax/releases/tag/jaxlib-v0.3.0).

    opened by samuela 4
  • TracedArrays treated as nodes by default

    TracedArrays treated as nodes by default

    Current for convenience all non-Tree fields which are not declared are set to static fields as most fields actually are, however, for more complex applications a Traced Array might actually be passed when a static field is usually expected.

    A simple solution is change the current node policy to treat any field containing a TracedArray as a node, this would be the same as the current policy for Tree fields.

    opened by cgarciae 0
Releases(0.2.1)
Owner
Cristian Garcia
ML Engineer at Quansight, working on Treex and Elegy.
Cristian Garcia
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

SΓΈren Hougaard Mulvad 13 Dec 25, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN πŸ™ƒ : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022