Pytorch implementation of One-Shot Affordance Detection

Related tags

Deep LearningOSAD_Net
Overview

One-shot Affordance Detection

PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, training code and pretrained models.

📋 Table of content

  1. 📎 Paper Link
  2. 💡 Abstract
  3. 📖 Method
    1. IJCAI Version
    2. Extended Version
  4. 📂 Dataset
    1. PAD
    2. PADv2
  5. 📃 Requirements
  6. ✏️ Usage
    1. Train
    2. Test
    3. Evaluation
  7. 📊 Experimental Results
    1. Performance on PADv2
    2. Performance on PAD
  8. 🍎 Potential Applications
  9. ✉️ Statement
  10. 🔍 Citation

📎 Paper Link

  • One-Shot Affordance Detection (IJCAI2021) (link)

Authors: Hongchen Luo, Wei Zhai, Jing Zhang, Yang Cao, Dacheng Tao

  • One-Shot Affordance Detection (Extended Version) (link)

Authors: Wei Zhai*, Hongchen Luo*, Jing Zhang, Yang Cao, Dacheng Tao

💡 Abstract

Affordance detection refers to identifying the potential action possibilities of objects in an image, which is a crucial ability for robot perception and manipulation. To empower robots with this ability in unseen scenarios, we first consider the challenging one-shot affordance detection problem in this paper, i.e., given a support image that depicts the action purpose, all objects in a scene with the common affordance should be detected. To this end, we devise a One-Shot Affordance Detection Network (OSAD-Net) that firstly estimates the human action purpose and then transfers it to help detect the common affordance from all candidate images. Through collaboration learning, OSAD-Net can capture the common characteristics between objects having the same underlying affordance and learn a good adaptation capability for perceiving unseen affordances. Besides, we build a Purpose-driven Affordance Dataset v2 (PADv2) by collecting and labeling 30k images from 39 affordance and 94 object categories. With complex scenes and rich annotations, our PADv2 can comprehensively understand the affordance of objects and can even be used in other vision tasks, such as scene understanding, action recognition, robot manipulation, etc. We present a standard one-shot affordance detection benchmark comparing 11 advanced models in several different fields. Experimental results demonstrate the superiority of our model over previous representative ones in terms of both objective metrics and visual quality.


Illustration of perceiving affordance. Given a support image that depicts the action purpose, all objects in ascene with the common affordance could be detected.

📖 Method

OSAD-Net (IJCAI2021)


Our One-Shot Affordance Detection (OS-AD) network. OSAD-Net_ijcai consists of three key modules: Purpose Learning Module (PLM), Purpose Transfer Module (PTM), and Collaboration Enhancement Module (CEM). (a) PLM aims to estimate action purpose from the human-object interaction in the support image. (b) PTM transfers the action purpose to the query images via an attention mechanism to enhance the relevant features. (c) CEM captures the intrinsic characteristics between objects having the common affordance to learn a better affordance perceiving ability.

OSAD-Net (Extended Version)


The framework of our OSAD-Net. For our OSAD-Net pipeline, the network first uses a Resnet50 to extract the features of support image and query images. Subsequently, the support feature, the bounding box of the person and object, and the pose of the person are fed together into the action purpose learning (APL) module to obtain the human action purpose features. And then send the human action purpose features and query images together to the mixture purpose transfer (MPT) to transfer the human action purpose to query images and activate the object region belonging to the affordance in the query images. Then, the output of the MPT is fed into a densely collaborative enhancement (DCE) module to learn the commonality among objects of the same affordance and suppress the irrelevant background regions using the cooperative strategy, and finally feed into the decoder to obtain the final detection results.

📂 Dataset


The samples images in the PADv2 of this paper. Our PADv2 has rich annotations such as affordance masks as well as depth information. Thus it provides a solid foundation for the affordance detection task.


The properties of PADv2. (a) The classification structure of the PADv2 in this paper consists of 39 affordance categories and 94 object categories. (b) The word cloud distribution of the PADv2. (c) Overlapping masks visualization of PADv2 mixed with specific affordance classes and overall category masks. (d) Confusion matrix of PADv2 affordance category and object category, where the horizontal axis corresponds to the object category and the vertical axis corresponds to the affordance category, (e) Distribution of co-occurring attributes of the PADv2, the grid is numbered for the total number of images.

Download PAD

cd Downloads/
unzip PAD.zip
cd OSAD-Net
mkdir datasets/PAD
mv Downloads/PAD/divide_1 datasets/PAD/   
mv Downloads/PAD/divide_2 datasets/PAD/   
mv Downloads/PAD/divide_3 datasets/PAD/  

Download PADv2

  • You can download the PADv2 from [ Baidu Pan (1ttj) ].
cd Downloads/
unzip PADv2_part1.zip
cd OSAD-Net
mkdir datasets/PADv2_part1
mv Downloads/PADv2_part1/divide_1 datasets/PADv2_part1/  
mv Downloads/PADv2_part1/divide_2 datasets/PADv2_part1/  
mv Downloads/PADv2_part1/divide_3 datasets/PADv2_part1/   

📃 Requirements

  • python 3.7
  • pytorch 1.1.0
  • opencv

✏️ Usage

git clone https://github.com/lhc1224/OSAD_Net.git
cd OSAD-Net

Train

You can download the pretrained model from [ Google Drive | Baidu Pan (xjk5) ], then move it to the models folder To train the OSAD-Net_ijcai model, run run_os_ad.py with the desired model architecture:

python run_os_ad.py   

To train the OSAD-Net model, run run_os_adv2.py with the desired model architecture:

python run_os_adv2.py   

Test

To test the OSAD-Net_ijcai model, run run_os_ad.py:

python run_os_ad.py  --mode test 

To test the OSAD-Net model, run run_os_ad.py, you can download the trained models from [ Google Drive | Baidu Pan (611r) ]

python run_os_adv2.py  --mode test 

Evaluation

In order to evaluate the forecast results, the evaluation code can be obtained via the following Evaluation Tools.

📊 Experimental Results

Performance on PADv2

You can download the affordance maps from [ Google Drive | Baidu Pan (hwtf) ]


Performance on PAD

You can download the affordance maps from [ Google Drive | Baidu Pan(hrlj) ]


🍎 Potential Applications


Potential Applications of one-shot affordance system. (a) Application I: Content Image Retrieval. The content image retrieval model combined with affordance detection has a promising application in search engines and online shopping platforms. (b) Application II: Learning from Demonstration. The one-shot affordance detection model can help an agent to naturally select the correct object based on the expert’s actions. (c) Application III: Self-exploration of Agents. The one-shot affordance detection model helps an agent to autonomously perceive all instances or areas of a scene with the similar affordance property in unknown human spaces based on historical data (e.g., images of human interactions)

✉️ Statement

This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact [email protected] or [email protected].

🔍 Citation

@inproceedings{Oneluo,
  title={One-Shot Affordance Detection},
  author={Hongchen Luo and Wei Zhai and Jing Zhang and Yang Cao and Dacheng Tao},
  booktitle={IJCAI},
  year={2021}
}
@article{luo2021one,
  title={One-Shot Affordance Detection in the Wild},
  author={Zhai, Wei and Luo, Hongchen and Zhang, Jing and Cao, Yang and Tao, Dacheng},
  journal={arXiv preprint arXiv:2106.14747xx},
  year={2021}
}
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022