Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Related tags

Deep LearningSSRR
Overview

Self-Supervised Reward Regression (SSRR)

Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression " Authors: Letian "Zac" Chen, Rohan Paleja, Matthew Gombolay

Usage

Quick overview

The pipeline of SSRR includes

  1. Initial IRL: Noisy-AIRL or AIRL.
  2. Noisy Dataset Generation: use initial policy learned in step 1 to generate trajectories with different noise levels and criticize trajectories with initial reward.
  3. Sigmoid Fitting: fit a sigmoid function for the noise-performance relationship using the data obtained in step 2.
  4. Reward Learning: learn a reward function by regressing to the sigmoid relationship obtained in step 3.
  5. Policy Learning: learn a policy by optimizing the reward learned in step 4.

I know this is a long README, but please make sure you read the entirety before trying out our code. Trust me, that will save your time!

Dependencies and Environment Preparations

Code is tested with Python 3.6 with Anaconda.

Required packages:

pip install scipy path.py joblib==0.12.3 flask h5py matplotlib scikit-learn pandas pillow pyprind tqdm nose2 mujoco-py cached_property cloudpickle git+https://github.com/Theano/[email protected]#egg=Theano git+https://github.com/neocxi/[email protected]#egg=Lasagne plotly==2.0.0 gym[all]==0.14.0 progressbar2 tensorflow-gpu==1.15 imgcat

Test sets of trajectories could be downloaded at Google Drive because Github could not hold files that are larger than 100MB! After downloading, please put full_demos/ under demos/.

If you are directly running python scripts, you will need to add the project root and the rllab_archive folder into your PYTHONPATH:

export PYTHONPATH=/path/to/this/repo/:/path/to/this/repo/rllab_archive/

If you are using the bash scripts provided (for example, noisy_airl_ssrr_drex_comparison_halfcheetah.sh), make sure to replace the first line to be

export PYTHONPATH=/path/to/this/repo/:/path/to/this/repo/rllab_archive/

Initial IRL

We provide code for AIRL and Noisy-AIRL implementation.

Running

Examples of running command would be

python script_experiment/halfcheetah_airl.py --output_dir=./data/halfcheetah_airl_test_1
python script_experiment/hopper_noisy_airl.py --output_dir=./data/hopper_noisy_airl_test_1 --noisy

Please note for Noisy-AIRL, you have to include the --noisy flag to make it actually sample trajectories with noise, otherwise it only changes the loss function according to Equation 6 in the paper.

Results

The result will be available in the output dir specified, and we recommend using rllab viskit to visualize it.

We also provide our run results available in data/{halfcheetah/hopper/ant}_{airl/noisy_airl}_test_1 if you want to skip this step!

Code Structure

The AIRL and Noisy-AIRL codes reside in inverse_rl/ with rllab dependencies in rllab_archive. The AIRL code is adjusted from the original AIRL codebase https://github.com/justinjfu/inverse_rl. The rllab archive was adjusted from the original rllab codebase https://github.com/rll/rllab.

Noisy Dataset Generation & Sigmoid Fitting

We implemented noisy dataset generation and sigmoid fitting together in code.

Running

Examples of running command would be

python script_experiment/noisy_dataset.py \
   --log_dir=./results/halfcheetah/temp/noisy_dataset/ \
   --env_id=HalfCheetah-v3 \
   --bc_agent=./results/halfcheetah/temp/bc/model.ckpt \
   --demo_trajs=./demos/suboptimal_demos/ant/dataset.pkl \
   --airl_path=./data/halfcheetah_airl_test_1/itr_999.pkl \
   --airl \
   --seed="${loop}"

Note that flag --airl determines whether we utilize the --airl_path or --bc_agent policy to generate the trajectory. Therefore, --bc_agent is optional when --airl present. For behavior cloning policy, please refer to https://github.com/dsbrown1331/CoRL2019-DREX.

The --airl_path always provide the initial reward to criticize the generated trajectories no matter whether --airl present.

Results

The result will be available in the log dir specified.

We also provide our run results available in results/{halfcheetah/hopper/ant}/{airl/noisy_airl}_data_ssrr_{1/2/3/4/5}/noisy_dataset/ if you want to skip this step!

Code Structure

Noisy dataset generation and Sigmoid fitting are implemented in script_experiment/noisy_dataset.py.

Reward Learning

We provide SSRR and D-REX implementation.

Running

Examples of running command would be

  python script_experiment/drex.py \
   --log_dir=./results/halfcheetah/temp/drex \
   --env_id=HalfCheetah-v3 \
   --bc_trajs=./demos/suboptimal_demos/halfcheetah/dataset.pkl \
   --unseen_trajs=./demos/full_demos/halfcheetah/unseen_trajs.pkl \
   --noise_injected_trajs=./results/halfcheetah/temp/noisy_dataset/prebuilt.pkl \
   --seed="${loop}"
  python script_experiment/ssrr.py \
   --log_dir=./results/halfcheetah/temp/ssrr \
   --env_id=HalfCheetah-v3 \
   --mode=train_reward \
   --noise_injected_trajs=./results/halfcheetah/temp/noisy_dataset/prebuilt.pkl \
   --bc_trajs=demos/suboptimal_demos/halfcheetah/dataset.pkl \
   --unseen_trajs=demos/full_demos/halfcheetah/unseen_trajs.pkl \
   --min_steps=50 --max_steps=500 --l2_reg=0.1 \
   --sigmoid_params_path=./results/halfcheetah/temp/noisy_dataset/fitted_sigmoid_param.pkl \
   --seed="${loop}"

The bash script also helps combining running of noisy dataset generation, sigmoid fitting, and reward learning, and repeats several times:

./airl_ssrr_drex_comparison_halfcheetah.sh

Results

The result will be available in the log dir specified.

The correlation between the predicted reward and the ground-truth reward tested on the unseen_trajs is reported at the end of running on console, or, if you are using the bash script, at the end of the d_rex.log or ssrr.log.

We also provide our run results available in results/{halfcheetah/hopper/ant}/{airl/noisy_airl}_data_ssrr_{1/2/3/4/5}/{drex/ssrr}/.

Code Structure

SSRR is implemented in script_experiment/ssrr.py, Agents/SSRRAgent.py, Datasets/NoiseDataset.py.

D-REX is implemented in script_experiment/drex.py, scrip_experiment/drex_utils.py, and script_experiment/tf_commons/ops.

Both implementations are adapted from https://github.com/dsbrown1331/CoRL2019-DREX.

Policy Learning

We utilize stable-baselines to optimize policy over the reward we learned.

Running

Before running, you should edit script_experiment/rl_utils/sac.yml to change the learned reward model directory, for example:

  env_wrapper: {"script_experiment.rl_utils.wrappers.CustomNormalizedReward": {"model_dir": "/home/zac/Programming/Zac-SSRR/results/halfcheetah/noisy_airl_data_ssrr_4/ssrr/", "ctrl_coeff": 0.1, "alive_bonus": 0.0}}

Examples of running command would be

python script_experiment/train_rl_with_learned_reward.py \
 --algo=sac \
 --env=HalfCheetah-v3 \
 --tensorboard-log=./results/HalfCheetah_custom_reward/ \
 --log-folder=./results/HalfCheetah_custom_reward/ \
 --save-freq=10000

Please note the flag --env-kwargs=terminate_when_unhealthy:False is necessary for Hopper and Ant as discussed in our paper Supplementary D.1.

Examples of running evaluation the learned policy's ground-truth reward would be

python script_experiment/test_rl_with_ground_truth_reward.py \
 --algo=sac \
 --env=HalfCheetah-v3 \
 -f=./results/HalfCheetah_custom_reward/ \
 --exp-id=1 \
 -e=5 \
 --no-render \
 --env-kwargs=terminate_when_unhealthy:False

Results

The result will be available in the log folder specified.

We also provide our run results in results/.

Code Structure

The code script_experiment/train_rl_with_learned_reward.py and utils/ call stable-baselines library to learn a policy with the learned reward function. Note that utils could not be renamed because of the rl-baselines-zoo constraint.

The codes are adjusted from https://github.com/araffin/rl-baselines-zoo.

Random Seeds

Because of the inherent stochasticity of GPU reduction operations such as mean and sum (https://github.com/tensorflow/tensorflow/issues/3103), even if we set the random seed, we cannot reproduce the exact result every time. Therefore, we encourage you to run multiple times to reduce the random effect.

If you have a nice way to get the same result each time, please let us know!

Ending Thoughts

We welcome discussions or extensions of our paper and code in Issues!

Feel free to leave a star if you like this repo!

For more exciting work our lab (CORE Robotics Lab in Georgia Institute of Technology led by Professor Matthew Gombolay), check out our website!

Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023