Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Overview

DnCNN

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

visitors

News: DRUNet

PyTorch training and testing code - 18/12/2019

I recommend to use the PyTorch code for training and testing. The model parameters of MatConvnet and PyTorch are same.

Merge batch normalization (PyTorch)

import torch
import torch.nn as nn


def merge_bn(model):
    ''' merge all 'Conv+BN' (or 'TConv+BN') into 'Conv' (or 'TConv')
    based on https://github.com/pytorch/pytorch/pull/901
    by Kai Zhang ([email protected]) 
    https://github.com/cszn/DnCNN
    01/01/2019
    '''
    prev_m = None
    for k, m in list(model.named_children()):
        if (isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d)) and (isinstance(prev_m, nn.Conv2d) or isinstance(prev_m, nn.Linear) or isinstance(prev_m, nn.ConvTranspose2d)):

            w = prev_m.weight.data

            if prev_m.bias is None:
                zeros = torch.Tensor(prev_m.out_channels).zero_().type(w.type())
                prev_m.bias = nn.Parameter(zeros)
            b = prev_m.bias.data

            invstd = m.running_var.clone().add_(m.eps).pow_(-0.5)
            if isinstance(prev_m, nn.ConvTranspose2d):
                w.mul_(invstd.view(1, w.size(1), 1, 1).expand_as(w))
            else:
                w.mul_(invstd.view(w.size(0), 1, 1, 1).expand_as(w))
            b.add_(-m.running_mean).mul_(invstd)
            if m.affine:
                if isinstance(prev_m, nn.ConvTranspose2d):
                    w.mul_(m.weight.data.view(1, w.size(1), 1, 1).expand_as(w))
                else:
                    w.mul_(m.weight.data.view(w.size(0), 1, 1, 1).expand_as(w))
                b.mul_(m.weight.data).add_(m.bias.data)

            del model._modules[k]
        prev_m = m
        merge_bn(m)


def tidy_sequential(model):
    for k, m in list(model.named_children()):
        if isinstance(m, nn.Sequential):
            if m.__len__() == 1:
                model._modules[k] = m.__getitem__(0)
        tidy_sequential(m)

Training (MatConvNet)

Testing (MatConvNet or Matlab)

  • [demos] Demo_test_DnCNN-.m.

  • [models] including the trained models for Gaussian denoising; a single model for Gaussian denoising, single image super-resolution (SISR) and deblocking.

  • [testsets] BSD68 and Set10 for Gaussian denoising evaluation; Set5, Set14, BSD100 and Urban100 datasets for SISR evaluation; Classic5 and LIVE1 for JPEG image deblocking evaluation.

New FDnCNN Models

I have trained new Flexible DnCNN (FDnCNN) models based on FFDNet.

FDnCNN can handle noise level range of [0, 75] via a single model.

Demo_FDnCNN_Gray.m

Demo_FDnCNN_Gray_Clip.m

Demo_FDnCNN_Color.m

Demo_FDnCNN_Color_Clip.m

Network Architecture and Design Rationale

  • Network Architecture

  • Batch normalization and residual learning are beneficial to Gaussian denoising (especially for a single noise level). The residual of a noisy image corrupted by additive white Gaussian noise (AWGN) follows a constant Gaussian distribution which stablizes batch normalization during training.

    • Histogram of noisy patches, clean patches, and residual (noise) patches from a batch of training. The noise level is 25, the patch size is 40x40, the batch size is 128.
    • Histogram of noisy patches, clean patches, and residual (noise) patches from another batch of training. The noise level is 25, the patch size is 40x40, the batch size is 128.
    • Noise-free image super-resolution does not have this property.
  • Predicting the residual can be interpreted as performing one gradient descent inference step at starting point (i.e., noisy image).

    • The parameters in DnCNN are mainly representing the image priors (task-independent), thus it is possible to learn a single model for different tasks, such as image denoising, image super-resolution and JPEG image deblocking.

    • The left is the input image corrupted by different degradations, the right is the restored image by DnCNN-3.

Results

Gaussian Denoising

The average PSNR(dB) results of different methods on the BSD68 dataset.

Noise Level BM3D WNNM EPLL MLP CSF TNRD DnCNN DnCNN-B FDnCNN DRUNet
15 31.07 31.37 31.21 - 31.24 31.42 31.73 31.61 31.69 31.91
25 28.57 28.83 28.68 28.96 28.74 28.92 29.23 29.16 29.22 29.48
50 25.62 25.87 25.67 26.03 - 25.97 26.23 26.23 26.27 26.59

Visual Results

The left is the noisy image corrupted by AWGN, the middle is the denoised image by DnCNN, the right is the ground-truth.

Gaussian Denoising, Single ImageSuper-Resolution and JPEG Image Deblocking via a Single (DnCNN-3) Model

Average PSNR(dB)/SSIM results of different methods for Gaussian denoising with noise level 15, 25 and 50 on BSD68 dataset, single image super-resolution with upscaling factors 2, 3 and 40 on Set5, Set14, BSD100 and Urban100 datasets, JPEG image deblocking with quality factors 10, 20, 30 and 40 on Classic5 and LIVE11 datasets.

Gaussian Denoising

Dataset Noise Level BM3D TNRD DnCNN-3
15 31.08 / 0.8722 31.42 / 0.8826 31.46 / 0.8826
BSD68 25 28.57 / 0.8017 28.92 / 0.8157 29.02 / 0.8190
50 25.62 / 0.6869 25.97 / 0.7029 26.10 / 0.7076

Single Image Super-Resolution

Dataset Upscaling Factor TNRD VDSR DnCNN-3
2 36.86 / 0.9556 37.56 / 0.9591 37.58 / 0.9590
Set5 3 33.18 / 0.9152 33.67 / 0.9220 33.75 / 0.9222
4 30.85 / 0.8732 31.35 / 0.8845 31.40 / 0.8845
2 32.51 / 0.9069 33.02 / 0.9128 33.03 / 0.9128
Set14 3 29.43 / 0.8232 29.77 / 0.8318 29.81 / 0.8321
4 27.66 / 0.7563 27.99 / 0.7659 28.04 / 0.7672
2 31.40 / 0.8878 31.89 / 0.8961 31.90 / 0.8961
BSD100 3 28.50 / 0.7881 28.82 / 0.7980 28.85 / 0.7981
4 27.00 / 0.7140 27.28 / 0.7256 27.29 / 0.7253
2 29.70 / 0.8994 30.76 / 0.9143 30.74 / 0.9139
Urban100 3 26.42 / 0.8076 27.13 / 0.8283 27.15 / 0.8276
4 24.61 / 0.7291 25.17 / 0.7528 25.20 / 0.7521

JPEG Image Deblocking

Dataset Quality Factor AR-CNN TNRD DnCNN-3
Classic5 10 29.03 / 0.7929 29.28 / 0.7992 29.40 / 0.8026
20 31.15 / 0.8517 31.47 / 0.8576 31.63 / 0.8610
30 32.51 / 0.8806 32.78 / 0.8837 32.91 / 0.8861
40 33.34 / 0.8953 - 33.77 / 0.9003
LIVE1 10 28.96 / 0.8076 29.15 / 0.8111 29.19 / 0.8123
20 31.29 / 0.8733 31.46 / 0.8769 31.59 / 0.8802
30 32.67 / 0.9043 32.84 / 0.9059 32.98 / 0.9090
40 33.63 / 0.9198 - 33.96 / 0.9247

Requirements and Dependencies

or just MATLAB R2015b to test the model. https://github.com/cszn/DnCNN/blob/4a4b5b8bcac5a5ac23433874d4362329b25522ba/Demo_test_DnCNN.m#L64-L65

Citation

@article{zhang2017beyond,
  title={Beyond a {Gaussian} denoiser: Residual learning of deep {CNN} for image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  year={2017},
  volume={26}, 
  number={7}, 
  pages={3142-3155}, 
}
@article{zhang2020plug,
  title={Plug-and-Play Image Restoration with Deep Denoiser Prior},
  author={Zhang, Kai and Li, Yawei and Zuo, Wangmeng and Zhang, Lei and Van Gool, Luc and Timofte, Radu},
  journal={arXiv preprint},
  year={2020}
}

====================================================================

Convolutional Neural Networks for Image Denoising and Restoration

@Inbook{zuo2018convolutional,
author={Zuo, Wangmeng and Zhang, Kai and Zhang, Lei},
editor={Bertalm{\'i}o, Marcelo},
title={Convolutional Neural Networks for Image Denoising and Restoration},
bookTitle={Denoising of Photographic Images and Video: Fundamentals, Open Challenges and New Trends},
year={2018},
publisher={Springer International Publishing},
address={Cham},
pages={93--123},
isbn={978-3-319-96029-6},
doi={10.1007/978-3-319-96029-6_4},
url={https://doi.org/10.1007/978-3-319-96029-6_4}
}

Challenges and Possible Solutions (from the above book chapter)

While the image denoising for AWGN removal has been well-studied, little work has been done on real image denoising. The main difficulty arises from the fact that real noises are much more complex than AWGN and it is not an easy task to thoroughly evaluate the performance of a denoiser. Fig. 4.15 shows four typical noise types in real world. It can be seen that the characteristics of those noises are very different and a single noise level may be not enough to parameterize those noise types. In most cases, a denoiser can only work well under a certain noise model. For example, a denoising model trained for AWGN removal is not effective for mixed Gaussian and Poisson noise removal. This is intuitively reasonable because the CNN-based methods can be treated as general case of Eq. (4.3) and the important data fidelity term corresponds to the degradation process. In spite of this, the image denoising for AWGN removal is valuable due to the following reasons. First, it is an ideal test bed to evaluate the effectiveness of different CNN-based denoising methods. Second, in the unrolled inference via variable splitting techniques, many image restoration problems can be addressed by sequentially solving a series of Gaussian denoising subproblems, which further broadens the application fields.

To improve the practicability of a CNN denoiser, perhaps the most straightforward way is to capture adequate amounts of real noisy-clean training pairs for training so that the real degradation space can be covered. This solution has advantage that there is no need to know the complex degradation process. However, deriving the corresponding clean image of a noisy one is not a trivial task due to the need of careful post-processing steps, such as spatial alignment and illumination correction. Alternatively, one can simulate the real degradation process to synthesize noisy images for a clean one. However, it is not easy to accurately model the complex degradation process. In particular, the noise model can be different across different cameras. Nevertheless, it is practically preferable to roughly model a certain noise type for training and then use the learned CNN model for type-specific denoising.

Besides the training data, the robust architecture and robust training also play vital roles for the success of a CNN denoiser. For the robust architecture, designing a deep multiscale CNN which involves a coarse-to-fine procedure is a promising direction. Such a network is expected to inherit the merits of multiscale: (i) the noise level decreases at larger scales; (ii) the ubiquitous low-frequency noise can be alleviated by multiscale procedure; and (iii) downsampling the image before denoising can effectively enlarge the receptive filed. For the robust training, the effectiveness of the denoiser trained with generative adversarial networks (GAN) for real image denoising still remains further investigation. The main idea of GAN-based denoising is to introduce an adversarial loss to improve the perceptual quality of denoised image. Besides, a distinctive advantage of GAN is that it can do unsupervised learning. More specifically, the noisy image without ground truth can be used in the training. So far, we have provided several possible solutions to improve the practicability of a CNN denoiser. We should note that those solutions can be combined to further improve the performance.

Owner
Kai Zhang
Image Restoration; Inverse Problems
Kai Zhang
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022