Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

Overview

CMT

Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award)

[Paper] [Site]

Directory Structure

  • src/: code of the whole pipeline

    • train.py: training script, take a npz as input music data to train the model

    • model.py: code of the model

    • gen_midi_conditional.py: inference script, take a npz (represents a video) as input to generate several songs

    • src/video2npz/: convert video into npz by extracting motion saliency and motion speed

  • dataset/: processed dataset for training, in the format of npz

  • logs/: logs that automatically generate during training, can be used to track training process

  • exp/: checkpoints, named after val loss (e.g. loss_13_params.pt)

  • inference/: processed video for inference (.npz), and generated music(.mid)

Preparation

  • clone this repo

  • download lpd_5_prcem_mix_v8_10000.npz from HERE and put it under dataset/

  • download pretrained model loss_8_params.pt from HERE and put it under exp/

  • install ffmpeg=3.2.4

  • prepare a Python3 conda environment

    pip install -r py3_requirements.txt
  • prepare a Python2 conda environment (for extracting visbeat)

    • pip install -r py2_requirements.txt
    • open visbeat package directory (e.g. anaconda3/envs/XXXX/lib/python2.7/site-packages/visbeat), replace the original Video_CV.py with src/video2npz/Video_CV.py

Training

  • If you want to use another training set: convert training data from midi into npz under dataset/

    python midi2numpy_mix.py --midi_dir /PATH/TO/MIDIS/ --out_name data.npz 
  • train the model

    python train.py -n XXX -g 0 1 2 3
    
    # -n XXX: the name of the experiment, will be the name of the log file & the checkpoints directory. if XXX is 'debug', checkpoints will not be saved
    # -l (--lr): initial learning rate
    # -b (--batch_size): batch size
    # -p (--path): if used, load model checkpoint from the given path
    # -e (--epochs): number of epochs in training
    # -t (--train_data): path of the training data (.npz file) 
    # -g (--gpus): ids of gpu
    # other model hyperparameters: modify the source .py files

Inference

  • convert input video (MP4 format) into npz (use the Python2 environment)

    cd src/video2npz
    sh video2npz.sh ../../videos/xxx.mp4
    • try resizing the video if this takes a long time
  • run model to generate .mid :

    python gen_midi_conditional.py -f "../inference/xxx.npz" -c "../exp/loss_8_params.pt"
    
    # -c: checkpoints to be loaded
    # -f: input npz file
    # -g: id of gpu (only one gpu is needed for inference) 
    • if using another training set, change decoder_n_class in gen_midi_conditional to the decoder_n_class in train.py
  • convert midi into audio: use GarageBand (recommended) or midi2audio

    • set tempo to the value of tempo in video2npz/metadata.json
  • combine original video and audio into video with BGM

    ffmpeg -i 'xxx.mp4' -i 'yyy.mp3' -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 'zzz.mp4'
    
    # xxx.mp4: input video
    # yyy.mp3: audio file generated in the previous step
    # zzz.mp4: output video
Owner
Zhaokai Wang
Undergraduate student from Beihang University
Zhaokai Wang
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022