PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

Related tags

Deep LearningPSANet
Overview

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction)

by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Loy, Dahua Lin, Jiaya Jia, details are in project page.

Introduction

This repository is build for PSANet, which contains source code for PSA module and related evaluation code. For installation, please merge the related layers and follow the description in PSPNet repository (test with CUDA 7.0/7.5 + cuDNN v4).

PyTorch Version

Highly optimized PyTorch codebases available for semantic segmentation in repo: semseg, including full training and testing codes for PSPNet and PSANet.

Usage

  1. Clone the repository recursively:

    git clone --recursive https://github.com/hszhao/PSANet.git
  2. Merge the caffe layers into PSPNet repository:

    Point-wise spatial attention: pointwise_spatial_attention_layer.hpp/cpp/cu and caffe.proto.

  3. Build Caffe and matcaffe:

    cd $PSANET_ROOT/PSPNet
    cp Makefile.config.example Makefile.config
    vim Makefile.config
    make -j8 && make matcaffe
    cd ..
  4. Evaluation:

    • Evaluation code is in folder 'evaluation'.

    • Download trained models and put them in related dataset folder under 'evaluation/model', refer 'README.md'.

    • Modify the related paths in 'eval_all.m':

      Mainly variables 'data_root' and 'eval_list', and your image list for evaluation should be similarity to that in folder 'evaluation/samplelist' if you use this evaluation code structure.

    cd evaluation
    vim eval_all.m
    • Run the evaluation scripts:
    ./run.sh
    
  5. Results:

    Predictions will show in folder 'evaluation/mc_result' and the expected scores are listed as below:

    (mIoU/pAcc. stands for mean IoU and pixel accuracy, 'ss' and 'ms' denote single scale and multiple scale testing.)

    ADE20K:

    network training data testing data mIoU/pAcc.(ss) mIoU/pAcc.(ms) md5sum
    PSANet50 train val 41.92/80.17 42.97/80.92 a8e884
    PSANet101 train val 42.75/80.71 43.77/81.51 ab5e56

    VOC2012:

    network training data testing data mIoU/pAcc.(ss) mIoU/pAcc.(ms) md5sum
    PSANet50 train_aug val 77.24/94.88 78.14/95.12 d5fc37
    PSANet101 train_aug val 78.51/95.18 79.77/95.43 5d8c0f
    PSANet101 COCO + train_aug + val test -/- 85.7/- 3c6a69

    Cityscapes:

    network training data testing data mIoU/pAcc.(ss) mIoU/pAcc.(ms) md5sum
    PSANet50 fine_train fine_val 76.65/95.99 77.79/96.24 25c06a
    PSANet101 fine_train fine_val 77.94/96.10 79.05/96.30 3ac1bf
    PSANet101 fine_train fine_test -/- 78.6/- 3ac1bf
    PSANet101 fine_train + fine_val fine_test -/- 80.1/- 1dfc91
  6. Demo video:

    • Video processed by PSANet (with PSPNet) on BDD dataset for drivable area segmentation: Video.

Citation

If PSANet is useful for your research, please consider citing:

@inproceedings{zhao2018psanet,
  title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing},
  author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya},
  booktitle={ECCV},
  year={2018}
}

Questions

Please contact '[email protected]' or '[email protected]'

This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022