[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Overview

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF]

Language grade: Python MIT licensed

Wuyang Chen, Xinyu Gong, Zhangyang Wang

In ICLR 2021.

Overview

We present TE-NAS, the first published training-free neural architecture search method with extremely fast search speed (no gradient descent at all!) and high-quality performance.

Highlights:

  • Trainig-free and label-free NAS: we achieved extreme fast neural architecture search without a single gradient descent.
  • Bridging the theory-application gap: We identified two training-free indicators to rank the quality of deep networks: the condition number of their NTKs, and the number of linear regions in their input space.
  • SOTA: TE-NAS achieved extremely fast search speed (one 1080Ti, 20 minutes on NAS-Bench-201 space / four hours on DARTS space on ImageNet) and maintains competitive accuracy.

Prerequisites

  • Ubuntu 16.04
  • Python 3.6.9
  • CUDA 10.1 (lower versions may work but were not tested)
  • NVIDIA GPU + CuDNN v7.3

This repository has been tested on GTX 1080Ti. Configurations may need to be changed on different platforms.

Installation

  • Clone this repo:
git clone https://github.com/chenwydj/TENAS.git
cd TENAS
  • Install dependencies:
pip install -r requirements.txt

Usage

0. Prepare the dataset

  • Please follow the guideline here to prepare the CIFAR-10/100 and ImageNet dataset, and also the NAS-Bench-201 database.
  • Remember to properly set the TORCH_HOME and data_paths in the prune_launch.py.

1. Search

NAS-Bench-201 Space

python prune_launch.py --space nas-bench-201 --dataset cifar10 --gpu 0
python prune_launch.py --space nas-bench-201 --dataset cifar100 --gpu 0
python prune_launch.py --space nas-bench-201 --dataset ImageNet16-120 --gpu 0

DARTS Space (NASNET)

python prune_launch.py --space darts --dataset cifar10 --gpu 0
python prune_launch.py --space darts --dataset imagenet-1k --gpu 0

2. Evaluation

  • For architectures searched on nas-bench-201, the accuracies are immediately available at the end of search (from the console output).
  • For architectures searched on darts, please use DARTS_evaluation for training the searched architecture from scratch and evaluation.

Citation

@inproceedings{chen2020tenas,
  title={Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective},
  author={Chen, Wuyang and Gong, Xinyu and Wang, Zhangyang},
  booktitle={International Conference on Learning Representations},
  year={2021}
}

Acknowledgement

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022