Labels4Free: Unsupervised Segmentation using StyleGAN

Overview

Labels4Free: Unsupervised Segmentation using StyleGAN

ICCV 2021

image Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthetic images

We propose an unsupervised segmentation framework for StyleGAN generated objects. We build on two main observations. First, the features generated by StyleGAN hold valuable information that can be utilized towards training segmentation networks. Second, the foreground and background can often be treated to be largely independent and be swapped across images to produce plausible composited images. For our solution, we propose to augment the Style-GAN2 generator architecture with a segmentation branch and to split the generator into a foreground and background network. This enables us to generate soft segmentation masks for the foreground object in an unsupervised fashion. On multiple object classes, we report comparable results against state-of-the-art supervised segmentation networks, while against the best unsupervised segmentation approach we demonstrate a clear improvement, both in qualitative and quantitative metrics.

Labels4Free: Unsupervised Segmentation Using StyleGAN (ICCV 2021)
Rameen Abdal, Peihao Zhu, Niloy Mitra, Peter Wonka
KAUST, Adobe Research

[Paper] [Project Page] [Video]

Installation

Clone this repo.

git clone https://github.com/RameenAbdal/Labels4Free.git
cd Labels4Free/

This repo is based on the Pytorch implementation of StyleGAN2 (rosinality/stylegan2-pytorch). Refer to this repo for setting up the environment, preparation of LMDB datasets and downloading pretrained weights of the models.

Download the pretrained weights of Alpha Networks here

Training the models

The models were trained on 4 RTX 2080 (24 GB) GPUs. In order to train the models using the settings in the paper use the following commands for each dataset.

Checkpoints and samples are saved in ./checkpoint and ./sample folders.

FFHQ dataset

python -m torch.distributed.launch --nproc_per_node=4 train.py --size 1024 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [FFHQ_CONFIG-F_CHECKPOINT]--loss_multiplier 1.2 --iter 1200 --trunc 1.0 --lr 0.0002 --reproduce_model

LSUN-Horse dataset

python -m torch.distributed.launch --nproc_per_node=4 train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_HORSE_CONFIG-F_CHECKPOINT] --loss_multiplier 3 --iter 500 --trunc 1.0 --lr 0.0002 --reproduce_model

LSUN-Cat dataset

python -m torch.distributed.launch --nproc_per_node=4 train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAT_CONFIG-F_CHECKPOINT]  --loss_multiplier 3 --iter 900 --trunc 0.5 --lr 0.0002 --reproduce_model

LSUN-Car dataset

python train.py --size 512 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAR_CONFIG-F_CHECKPOINT] --loss_multiplier 10 --iter 50 --trunc 0.3 --lr 0.002 --sat_weight 1.0 --model_save_freq 25 --reproduce_model --use_disc

In order to train your own models using different settings e.g on a single GPU, using different samples, iterations etc. use the following commands.

FFHQ dataset

python train.py --size 1024 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [FFHQ_CONFIG-F_CHECKPOINT] --loss_multiplier 1.2 --iter 2000 --trunc 1.0 --lr 0.0002 --bg_coverage_wt 3 --bg_coverage_value 0.4

LSUN-Horse dataset

python train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_HORSE_CONFIG-F_CHECKPOINT] --loss_multiplier 3 --iter 2000 --trunc 1.0 --lr 0.0002 --bg_coverage_wt 6 --bg_coverage_value 0.6

LSUN-Cat dataset

python train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAT_CONFIG-F_CHECKPOINT] --loss_multiplier 3 --iter 2000 --trunc 0.5 --lr 0.0002 --bg_coverage_wt 4 --bg_coverage_value 0.35

LSUN-Car dataset

python train.py --size 512 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAR_CONFIG-F_CHECKPOINT] --loss_multiplier 20 --iter 750 --trunc 0.3 --lr 0.0008 --sat_weight 0.1 --bg_coverage_wt 40 --bg_coverage_value 0.75 --model_save_freq 50

Sample from the pretrained model

Samples are saved in ./test_sample folder.

python test_sample.py --size [SIZE] --batch 2 --n_sample 100 --ckpt_bg_extractor [ALPHANETWORK_MODEL] --ckpt_generator [GENERATOR_MODEL] --th 0.9

Results on Custom dataset

Folder: Custom dataset, predicted and ground truth masks.

python test_customdata.py --path_gt [GT_Folder] --path_pred [PRED_FOLDER]

Citation

@InProceedings{Abdal_2021_ICCV,
    author    = {Abdal, Rameen and Zhu, Peihao and Mitra, Niloy J. and Wonka, Peter},
    title     = {Labels4Free: Unsupervised Segmentation Using StyleGAN},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {13970-13979}
}

Acknowledgments

This implementation builds upon the Pytorch implementation of StyleGAN2 (rosinality/stylegan2-pytorch). This work was supported by Adobe Research and KAUST Office of Sponsored Research (OSR).

Owner
PhD @ KAUST
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022