PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

Overview

PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

ci_workflow codeql_workflow

Authors: David Biagioni, Xiangyu Zhang, Dylan Wald, Deepthi Vaidhynathan, Rhoit Chintala, Jennifer King, Ahmed S. Zamzam

Corresponding author: David Biagioni

All authors are with the National Renewable Energy Laboratory (NREL).

Description

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training frameworks for reinforcement learning (RL). Although many frameworks exist for training multi-agent RL (MARL) policies, none can rapidly prototype and develop the environments themselves, especially in the context of heterogeneous (composite, multidevice) power systems where power flow solutions are required to define grid-level variables and costs. PowerGridworld is an opensource software package that helps to fill this gap. To highlight PowerGridworld’s key features, we include two case studies and demonstrate learning MARL policies using both OpenAI’s multi-agent deep deterministic policy gradient (MADDPG) and RLLib’s proximal policy optimization (PPO) algorithms. In both cases, at least some subset of agents incorporates elements of the power flow solution at each time step as part of their reward (negative cost) structures.

Please refer to our preprint on arXiv for more details. Data and run scripts used to generate figures in the preprint are available in the paper directory.

Basic installation instructions

Env setup:

conda create -n gridworld python=3.8 -y
conda activate gridworld

git clone [email protected]:NREL/PowerGridworld.git
cd PowerGridWorld
pip install -e .
pip install -r requirements.txt

Run the pytests to sanity check:

pytest tests/
pytests --nbmake examples/envs

Examples

Examples of running various environments and MARL training algorithms can be found in examples.

Funding Acknowledgement

This work was authored by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This work was supported by the Laboratory Directed Research and Development (LDRD) Program at NREL.

Citation

If citing this work, please use the following:

@article{biagioni2021powergridworld,
  title={PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems},
  author={Biagioni, David and Zhang, Xiangyu and Wald, Dylan and Vaidhynathan, Deepthi and Chintala, Rohit and King, Jennifer and Zamzam, Ahmed S},
  journal={arXiv preprint arXiv:2111.05969},
  year={2021}
}
You might also like...
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

A multi-entity Transformer for multi-agent spatiotemporal modeling.
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Deep Reinforcement Learning based Trading Agent for Bitcoin
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

 COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Comments
  • Bump tensorflow from 1.8.0 to 2.5.2 in /examples/marl/openai

    Bump tensorflow from 1.8.0 to 2.5.2 in /examples/marl/openai

    Bumps tensorflow from 1.8.0 to 2.5.2.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.5.2

    Release 2.5.2

    This release introduces several vulnerability fixes:

    • Fixes a code injection issue in saved_model_cli (CVE-2021-41228)
    • Fixes a vulnerability due to use of uninitialized value in Tensorflow (CVE-2021-41225)
    • Fixes a heap OOB in FusedBatchNorm kernels (CVE-2021-41223)
    • Fixes an arbitrary memory read in ImmutableConst (CVE-2021-41227)
    • Fixes a heap OOB in SparseBinCount (CVE-2021-41226)
    • Fixes a heap OOB in SparseFillEmptyRows (CVE-2021-41224)
    • Fixes a segfault due to negative splits in SplitV (CVE-2021-41222)
    • Fixes segfaults and vulnerabilities caused by accesses to invalid memory during shape inference in Cudnn* ops (CVE-2021-41221)
    • Fixes a null pointer exception when Exit node is not preceded by Enter op (CVE-2021-41217)
    • Fixes an integer division by 0 in tf.raw_ops.AllToAll (CVE-2021-41218)
    • Fixes an undefined behavior via nullptr reference binding in sparse matrix multiplication (CVE-2021-41219)
    • Fixes a heap buffer overflow in Transpose (CVE-2021-41216)
    • Prevents deadlocks arising from mutually recursive tf.function objects (CVE-2021-41213)
    • Fixes a null pointer exception in DeserializeSparse (CVE-2021-41215)
    • Fixes an undefined behavior arising from reference binding to nullptr in tf.ragged.cross (CVE-2021-41214)
    • Fixes a heap OOB read in tf.ragged.cross (CVE-2021-41212)
    • Fixes a heap OOB read in all tf.raw_ops.QuantizeAndDequantizeV* ops (CVE-2021-41205)
    • Fixes an FPE in ParallelConcat (CVE-2021-41207)
    • Fixes FPE issues in convolutions with zero size filters (CVE-2021-41209)
    • Fixes a heap OOB read in tf.raw_ops.SparseCountSparseOutput (CVE-2021-41210)
    • Fixes vulnerabilities caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes vulnerabilities caused by incomplete validation of shapes in multiple TF ops (CVE-2021-41206)
    • Fixes a segfault produced while copying constant resource tensor (CVE-2021-41204)
    • Fixes a vulnerability caused by unitialized access in EinsumHelper::ParseEquation (CVE-2021-41201)
    • Fixes several vulnerabilities and segfaults caused by missing validation during checkpoint loading (CVE-2021-41203)
    • Fixes an overflow producing a crash in tf.range (CVE-2021-41202)
    • Fixes an overflow producing a crash in tf.image.resize when size is large (CVE-2021-41199)
    • Fixes an overflow producing a crash in tf.tile when tiling tensor is large (CVE-2021-41198)
    • Fixes a vulnerability produced due to incomplete validation in tf.summary.create_file_writer (CVE-2021-41200)
    • Fixes multiple crashes due to overflow and CHECK-fail in ops with large tensor shapes (CVE-2021-41197)
    • Fixes a crash in max_pool3d when size argument is 0 or negative (CVE-2021-41196)
    • Fixes a crash in tf.math.segment_* operations (CVE-2021-41195)
    • Updates curl to 7.78.0 to handle CVE-2021-22922, CVE-2021-22923, CVE-2021-22924, CVE-2021-22925, and CVE-2021-22926.

    TensorFlow 2.5.1

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.5.2

    This release introduces several vulnerability fixes:

    ... (truncated)

    Commits
    • 957590e Merge pull request #52873 from tensorflow-jenkins/relnotes-2.5.2-20787
    • 2e1d16d Update RELEASE.md
    • 2fa6dd9 Merge pull request #52877 from tensorflow-jenkins/version-numbers-2.5.2-192
    • 4807489 Merge pull request #52881 from tensorflow/fix-build-1-on-r2.5
    • d398bdf Disable failing test
    • 857ad5e Merge pull request #52878 from tensorflow/fix-build-1-on-r2.5
    • 6c2a215 Disable failing test
    • f5c57d4 Update version numbers to 2.5.2
    • e51f949 Insert release notes place-fill
    • 2620d2c Merge pull request #52863 from tensorflow/fix-build-3-on-r2.5
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 4
  • Bump notebook from 6.4.5 to 6.4.10

    Bump notebook from 6.4.5 to 6.4.10

    Bumps notebook from 6.4.5 to 6.4.10.

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Dave eagle tests

    Dave eagle tests

    Verified that rllib results on Eagle are qualitatively the same as reported in paper. Updated some documentation. Added notebook tests just sanity checking that no errors are raised when run.

    opened by davebiagioni 0
  • Dave eagle tests

    Dave eagle tests

    Verified that rllib results on Eagle are about the same after the refactor.
    Made some small updates to documentation. Added notebook tests (just sanity checking that no errors are raised).

    opened by davebiagioni 0
Releases(v0.0.1)
Owner
National Renewable Energy Laboratory
National Renewable Energy Laboratory
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021