Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Related tags

Deep LearningDeep-RTC
Overview

Deep-RTC [project page]

This repository contains the source code accompanying our ECCV 2020 paper.

Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier
Tz-Ying Wu, Pedro Morgado, Pei Wang, Chih-Hui Ho, Nuno Vasconcelos

@inproceedings{Wu20DeepRTC,
	title={Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier},
	author={Tz-Ying Wu and Pedro Morgado and Pei Wang and Chih-Hui Ho and Nuno Vasconcelos},
	booktitle={European Conference on Computer Vision (ECCV)},
	year={2020}
}

Dependencies

  • Python (3.5.6)
  • PyTorch (1.2.0)
  • torchvision (0.4.0)
  • NumPy (1.15.2)
  • Pillow (5.2.0)
  • PyYaml (5.1.2)
  • tensorboardX (1.8)

Data preparation

These datasets can be downloaded from the above links. Please organize the images in the hierarchical folders that represent the dataset hierarchy, and put the root folder under prepro/raw. For example,

prepro/raw/imagenet
--abstraction
----bubble
------ILSVRC2012_val_00014026.JPEG
------ILSVRC2012_val_00000697.JPEG
...
--physical_entity
----object
...

While CIFAR100 and iNaturalist have released taxonomies, we built the tree-type taxonomy of AWA2 and ImageNet with WordNet. All the taxonomies are provided in prepro/data/{dataset}/tree.npy, and the data splits are provided in prepro/splits/{dataset}/{split}.json. Please refer to prepro/README.md for more details. After the raw images are managed hierarchically, run

$ ./prepare_data.sh {dataset}

where {dataset}=awa2/cifar100/imagenet/inaturalist. This will automatically generate the data lists for all splits, and build the codeword matrices needed for training Deep-RTC. Note that our codes can be applied to other datasets once they are organized hierarchically.

Training and evaluation

To train and evaluate Deep-RTC, run

$ export PYTHONPATH=${PWD}/prepro:${PYTHONPATH}
$ ./run.sh {dataset}

where {dataset}=awa2/cifar100/imagenet/inaturalist. Our pretrained models can be downloaded here.

Owner
Gina Wu
https://gina9726.github.io/
Gina Wu
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023