Cross View SLAM

Overview

Cross View SLAM

This is the associated code and dataset repository for our paper

I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Localization and Mapping With LiDAR," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2397-2404, April 2021, doi: 10.1109/LRA.2021.3061332.

See also our accompanying video

XView demo video

Compilation

We release the localization portion of the system, which can be integrated with a LiDAR-based mapper of the user's choice. The system reqires ROS and should be built as a catkin package. We have tested with ROS Melodic and Ubuntu 18.04. Note that we require GCC 9 or greater as well as Intel TBB.

Datasets

Our datasets

We release our own datasets from around University City in Philadelphia and Morgantown, PA. They can be downloaded here. Ucity2 was taken several months after Ucity, and both follow the same path. These datasets are in rosbag format, including the following topics:

  • /lidar_rgb_calib/painted_pc is the semantically labelled motion-compensated pointcloud. Classes are encoded as a per-point color, with each channel equal to the class ID. Classes are based off of cityscapes and listed below.
  • /os1_cloud_node/imu is raw IMU data from the Ouster OS1-64.
  • /quad/front/image_color/compressed is a compressed RGB image from the forward-facing camera.
  • /subt/global_pose is the global pose estimate from UPSLAM.
  • /subt/integrated_pose is the integrated pose estimate from UPSLAM. This differs from the above in that it does not take into account loop closures, and is used as the motion prior for the localization filter.

Please note that UPSLAM odometry was generated purely based on LiDAR without semantics, and is provided to act as a loose motion prior. It should not be used as ground truth.

If you require access to the raw data for your work, please reach out directly at iandm (at) seas (dot) upenn (dot) edu.

KITTI

We provide a derivative of the excellent kitti2bag tool in the scripts directory, modified to use semantics from SemanticKITTI. To use this tool, you will need to download the raw synced + rectified data from KITTI as well as the SemanticKITTI data. Your final directory structure should look like

2011-09-30
  2011_09_30_drive_0033_sync  
    image_00
      timestamps.txt
      data
    image_01
      timestamps.txt
      data
    image_02
      timestamps.txt
      data
    image_03
      timestamps.txt
      data
    labels
      000000.label
      000001.label
      ...
    oxts
      dataformat.txt
      timestamps.txt
      data
    velodyne_points
      timestamps_end.txt  
      timestamps_start.txt
      timestamps.txt
      data
  calib_cam_to_cam.txt  
  calib_imu_to_velo.txt  
  calib_velo_to_cam.txt

You can then run ./kitti2bag.py -t 2011_09_30 -r 0033 raw_synced /path/to/kitti in order to generate a rosbag usable with our system.

Classes

Class Label
2 Building
7 Vegetation
13 Vehicle
100 Road/Parking Lot
102 Ground/Sidewalk
255 Unlabelled

Usage

We provide a launch file for KITTI and for our datasets. To run, simply launch the appropriate launch file and play the bag. Note that when data has been modified, the system will take several minutes to regenerate the processed map TDF. Once this has been done once, and parameters are not changed, it will be cached. The system startup should look along the lines of

[ INFO] [1616266360.083650372]: Found cache, checking if parameters have changed
[ INFO] [1616266360.084357050]: No cache found, loading raster map
[ INFO] [1616266360.489371763]: Computing distance maps...
[ INFO] [1616266360.489428570]: maps generated
[ INFO] [1616266360.597603324]: transforming coord
[ INFO] [1616266360.641200529]: coord rotated
[ INFO] [1616266360.724551466]: Sample grid generated
[ INFO] [1616266385.379985385]: class 0 complete
[ INFO] [1616266439.390797168]: class 1 complete
[ INFO] [1616266532.004976919]: class 2 complete
[ INFO] [1616266573.041695479]: class 3 complete
[ INFO] [1616266605.901935236]: class 4 complete
[ INFO] [1616266700.533124618]: class 5 complete
[ INFO] [1616266700.537600570]: Rasterization complete
[ INFO] [1616266700.633949062]: maps generated
[ INFO] [1616266700.633990791]: transforming coord
[ INFO] [1616266700.634004336]: coord rotated
[ INFO] [1616266700.634596830]: maps generated
[ INFO] [1616266700.634608101]: transforming coord
[ INFO] [1616266700.634618110]: coord rotated
[ INFO] [1616266700.634666000]: Initializing particles...
[ INFO] [1616266700.710166543]: Particles initialized
[ INFO] [1616266700.745398596]: Setup complete

ROS Topics

  • /cross_view_slam/gt_pose Input, takes in ground truth localization if provided to draw on the map. Not used.
  • /cross_view_slam/pc Input, the pointwise-labelled pointcloud
  • /cross_view_slam/motion_prior Input, the prior odometry (from some LiDAR odometry system)
  • /cross_view_slam/map Output image of map with particles
  • /cross_view_slam/scan Output image visualization of flattened polar LiDAR scan
  • /cross_view_slam/pose_est Estimated pose of the robot with uncertainty, not published until convergence
  • /cross_view_slam/scale Estimated scale of the map in px/m, not published until convergence

ROS Parameters

  • raster_res Resolution to rasterize the svg at. 1 is typically fine.
  • use_raster Load the map svg or raster images. If the map svg is loaded, raster images are automatically generated in the accompanying folder.
  • map_path Path to map file.
  • svg_res Resolution of the map in px/m. If not specified, the localizer will try to estimate.
  • svg_origin_x Origin of the map in pixel coordinates, x value. Used only for ground truth visualization
  • svg_origin_y Origin of the map in pixel coordinates, y value.
  • use_motion_prior If true, use the provided motion estimate. Otherwise, use 0 velocity prior.
  • num_particles Number of particles to use in the filter.
  • filter_pos_cov Motion prior uncertainty in position.
  • filter_theta_cov Motion prior uncertainty in bearing.
  • filter_regularization Gamma in the paper, see for more details.

Citation

If you find this work or datasets helpful, please cite

@ARTICLE{9361130,
author={I. D. {Miller} and A. {Cowley} and R. {Konkimalla} and S. S. {Shivakumar} and T. {Nguyen} and T. {Smith} and C. J. {Taylor} and V. {Kumar}},
journal={IEEE Robotics and Automation Letters},
title={Any Way You Look at It: Semantic Crossview Localization and Mapping With LiDAR},
year={2021},
volume={6},
number={2},
pages={2397-2404},
doi={10.1109/LRA.2021.3061332}}
Owner
Ian D. Miller
Currently a PhD student at Penn in Electrical and Systems Engineering under Prof. Vijay Kumar.
Ian D. Miller
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022