Projecting interval uncertainty through the discrete Fourier transform

Overview

Projecting interval uncertainty through the discrete Fourier transform

This repository provides a method that can propagate interval uncertainty through the discrete Fourier transform while yielding the exact bounds on the Fourier amplitude and Power Spectral Density function. The algorithm applies to real sequences of intervals. The method allows technical analysts to project interval uncertainty present in the time signals to their Fourier amplitude without making assumptions about the error distribution at each time step. Thus, it is possible to calculate and analyse system responses in the frequency domain without conducting extensive Monte Carlo simulations in the time domain. The applicability of this method in practice is demonstrated by a technical application.

Disclaimer: This code was developed for illustration purposes and for proof-of-concept. Thus this code is not optimized for large-scale applications. An optimized version of the code is currently under development.

References

De Angelis, M.; Behrendt, M.; Comerford, L.; Zhang, Y.; Beer, M. (2021): Forward interval propagation through the discrete Fourier transform, The 9th international workshop on Reliable Engineering Computing, arXiv:2012.09778.

Installation

Clone the git repository on your machine, cd to the repository, open a Python3 interpreter and import the interval Fourier transform ans other useful packages

from fourier.transform import transform as intervalDFT
from fourier.application import application as app
from fourier.number import number as int_num
import numpy
from numpy import (arange, cos, exp, linspace, mean, pi,  sin, zeros) 
from matplotlib import pyplot, cm

Signal generation and interval DFT

At first time and frequency parameters and an analytical PSD function are needed to model a stochastic process.

Define parameters

wu = 2.2975 # upper cut-off frequency
T = 350 # total time length

dt = 2*pi /(2*wu) # timestep size
dw = 2*pi / T # frequency step size

t = numpy.arange(0,T,dt) # time vector
w = numpy.arange(0,wu,dw) # frequency vector

JONSWAP power spectrum

The JONSWAP power spectrum is utilised to generate stochastic processes. The required parameters are:

alpha = 0.0081 # spectral energy parameter
w_p = 0.7 # peak frequency
gamma = 3.3 # peak enhancement factor
sigma1 = 0.07 # spectral width parameter for w <= w_p
sigma2 = 0.09 # spectral width parameter for w > w_p
spectrum = app.jonswap_spectrum(w,alpha,w_p,gamma,sigma1,sigma2)

Plot the JONSWAP power spectrum

ax = app.plot_line(w,spectrum,figsize=(18,6),xlabel=r'#$x$',ylabel='$x$',color=None,lw=1,title='JONSWAP power spectrum',ax=None,label=None)
ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)

fig

Generate time signal and intervalize it

To generate a stochastic process the spectral representation method is utilised. This signal is then intervalized with interval uncertainty ±0.1. Both signals are plotted.

sea_waves = app.stochastic_process(spectrum,w,t) 
pm = 0.1
sea_waves_interval = intervalDFT.intervalize(sea_waves, pm)

ax = app.plot_line(t,sea_waves,figsize=(18,6),xlabel='Time [s]',ylabel='Wave height [m]',color='rebeccapurple',lw=1,title='Signal from stationary power spectrum',ax=None,label=None)
sea_waves_interval.plot(xlabel='Time [s]',ylabel='Wave height [m]',title=r'Signal with $\pm$ '+str(pm)+' information gaps (intervals)')

fig fig

Compute the Fourier transforms

Compute the Fourier transform of the crisp signal and the interval Fourier transform for the interval signal with the selective method and the interval method. Also compute the periodogram of respective (bounded) Fourier amplitudes.

FA = intervalDFT.Fourier_amplitude(sea_waves)
BI,BS = intervalDFT.compute_amplitude_bounds(sea_waves_interval)
BI.insert(0,int_num.Interval(0,0))
BS.insert(0,int_num.Interval(0,0))

FA = app.periodogram(FA, t, dt)
BI = app.periodogram(BI, t, dt)
BS = app.periodogram(BS, t, dt)

Plot the interval Fourier transform

The amplitude of the crisp signal and both bounded Fourier amplituted are plotted.

ax = app.plot_line(w,FA,figsize=(18,6),xlabel=r'#$x$',ylabel=r'$x$',color=None,lw=1,title=None,ax=None,label='Interval uncertainty: $\pm$ '+str(pm)+'')
app.plot_bounds(x=w,bounds=BI,color='cornflowerblue',alpha=0.4,ax=ax)
app.plot_bounds(x=w,bounds=BS,color='orangered',alpha=0.6,ax=ax)
ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
ax.tick_params(direction='out', length=6, width=2, labelsize=14)

fig

Application to a SDOF system

The system under investigation is a offshore wind turbine simplified to a SDOF system. The parameters are set to

R = 3 # outer radius
r = 2.8 # inner radius
h_pile = 60 # height
rho_steel = 7800 # density of steel
c = 1e5 # stiffness
k = 1e6 # damping coefficient

Get the natural frequency w0 and the damping ratio xi

w0,xi = app.wind_turbine(R,r,h_pile,rho_steel,c,k)

The response can be obtained by pushing the (intervalised) signal through the frequency response function

freq_response_precise = app.frequency_response(w,FA,w0,xi)
freq_response_BI_low,freq_response_BI_high = app.frequency_response_interval(w,BI,w0,xi)
freq_response_BS_low,freq_response_BS_high = app.frequency_response_interval(w,BS,w0,xi)

Those responses can be plotted

ax = app.plot_line(w,freq_response_precise,figsize=(18,6),xlabel=r'#$x$',ylabel=r'$x$',color=None,lw=1,title=None,ax=None,label=None)
ax.fill_between(x=w,y1=freq_response_BI_low,y2=freq_response_BI_high, alpha=0.4, label='Interval', edgecolor='blue', lw=2, color='cornflowerblue')
ax.fill_between(x=w,y1=freq_response_BS_low,y2=freq_response_BS_high, alpha=0.6, label='Selective', edgecolor='red', lw=2, color='orangered')

ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
ax.set_title(r'Interval uncertainty: $\pm$ '+str(pm)+'', fontsize=20)

ax.tick_params(direction='out', length=6, width=2, labelsize=14)
_=ax.set_xlim([0.5, 1.1])

fig

Comparison with Monte Carlo

In this section it is illustrated how severe interval uncertainty is underestimated by Monte Carlo. To show this, a signal with interval uncertainty ±0.5 is utilised and plotted.

pm = 0.5
sea_waves_interval_05 = intervalDFT.intervalize(sea_waves, pm)
sea_waves_interval_05.plot(xlabel='Time [s]',ylabel='Wave height [m]',title=r'Signal with $\pm$ '+str(pm)+' information gaps (intervals)')

fig

Generate some random signals between the bounds. All signals which are within or on the bounds are possible.

RAND_SIGNALS = sea_waves_interval_05.rand(N=20) # this picks out N (inner) random signals within the bounds

fig,ax = intervalDFT.subplots(figsize=(16,8))
for rs in RAND_SIGNALS:
    intervalDFT.plot_signal(rs,ax=ax)
sea_waves_interval_05.plot(ax=ax)
ax.grid()
_=ax.set_xlim(0,55) # underscore here is used to suppress the output of this line

fig

Computing the Fourier amplitude bounds and the periodogram of the interval signal

BI,BS = intervalDFT.compute_amplitude_bounds(sea_waves_interval_05)
BI.insert(0,int_num.Interval(0,0))
BS.insert(0,int_num.Interval(0,0))

BI = app.periodogram(BI, t, dt)
BS = app.periodogram(BS, t, dt) 

Plotting the bounds of the Fourier amplitude in comparison to the resulting bounds obtained by Monte Carlo

BI_low=[ai.lo() for ai in BI]
BI_high=[ai.hi() for ai in BI]
BS_low=[ai.lo() for ai in BS]
BS_high=[ai.hi() for ai in BS]

fig = pyplot.figure(figsize=(18,6))
ax = fig.subplots()
ax.grid()
ax.fill_between(x=w,y1=BI_low,y2=BI_high, alpha=0.4, label='Interval', edgecolor='blue', lw=2, color='cornflowerblue')
ax.fill_between(x=w,y1=BS_low,y2=BS_high, alpha=0.6, label='Selective', edgecolor='red', lw=2, color='orangered')

n_MC = 10
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    #intervalDFT.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='palegreen',lw=1,title=None,ax=ax,label=None) 
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#d7f4d7',lw=1,title=None,ax=ax,label=None) 

ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
ax.set_title(r'Interval uncertainty: $\pm$ '+str(pm)+'', fontsize=20)

ax.tick_params(direction='out', length=6, width=2, labelsize=14)  

fig

Which increasing sample size, the range within the bounds of the interval signal is better covered. However, even a very high sample size is insufficient to get close to the bounds obtained by the interval DFT.

fig = pyplot.figure(figsize=(18,6))
ax = fig.subplots()
ax.grid()

n_MC = 1000
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#7cc47c',lw=1,title=None,ax=ax,label=None) 
    
n_MC = 100
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#a7d9a7',lw=1,title=None,ax=ax,label=None) 
    
n_MC = 10
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#d7f4d7',lw=1,title=None,ax=ax,label=None) 
    
ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
_=ax.set_title('Bounds estimated by MC', fontsize=20) 

fig

Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022