[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Related tags

Deep LearningRLT-DIMP
Overview

Feel free to visit my homepage

Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper]


Presentation video

1-minute version (ENG)

Video Label

12-minute version (ENG)

Video Label


Summary

Abstract

We propose an improved discriminative model prediction method for robust long-term tracking based on a pre-trained short-term tracker. The baseline pre-trained short-term tracker is SuperDiMP which combines the bounding-box regressor of PrDiMP with the standard DiMP classifier. Our tracker RLT-DiMP improves SuperDiMP in the following three aspects: (1) Uncertainty reduction using random erasing: To make our model robust, we exploit an agreement from multiple images after erasing random small rectangular areas as a certainty. And then, we correct the tracking state of our model accordingly. (2) Random search with spatio-temporal constraints: we propose a robust random search method with a score penalty applied to prevent the problem of sudden detection at a distance. (3) Background augmentation for more discriminative feature learning: We augment various backgrounds that are not included in the search area to train a more robust model in the background clutter. In experiments on the VOT-LT2020 benchmark dataset, the proposed method achieves comparable performance to the state-of-the-art long-term trackers.


Framework


Baseline

  • We adopt the pre-trained short-term tracker which combines the bounding box regressor of PrDiMP with the standard DiMP classifier
  • This tracker's name is SuperDiMP and it can be downloaded on the DiMP-family's github page [link]

Contribution1: Uncertainty reduction using random erasing


Contribution2: Random search with spatio-temporal constraints


Contribution3: Background augmentation for more discriminative learning


Prerequisites

  • Ubuntu 18.04 / Python 3.6 / CUDA 10.0 / gcc 7.5.0
  • Need anaconda
  • Need GPU (more than 2GB, Sometimes it is a little more necessary depending on the situation.)
  • Unfortunately, "Precise RoI Pooling" included in the Dimp tracker only supports GPU (cuda) implementations.
  • Need root permission
  • All libraries in “install.sh” file (please check “how to install”)

How to install

  • Unzip files in $(tracker-path)
  • cd $(tracker-path)
  • bash install.sh $(anaconda-path) $(env-name) (Automatically create conda environment, If you don’t want to make more conda environments, run “bash install_in_conda.sh” after conda activation)
  • check pretrained model "super_dimp.pth.tar" in $(tracker-path)$/pytracking/networks/ (It should be downloaded by install.sh)
  • conda activate $(env-name)
  • make VOTLT2020 workspace (vot workspace votlt2020 --workspace $(workspace-path))
  • move trackers.ini to $(workspace-path)
  • move(or download) votlt2020 dataset to $(workspace-path)/sequences
  • set the VOT dataset directory ($(tracker-path)/pytracking/evaluation/local.py), vot_path should include ‘sequence’ word (e.g., $(vot-dataset-path)/sequences/), vot_path must be the absolute path (not relative path)
  • modify paths in the trackers.ini file, paths should include ‘pytracking’ word (e.g., $(tracker-path)/pytracking), paths must be absolute path (not relative path)
  • cd $(workspace-path)
  • vot evaluate RLT_DiMP --workspace $(workspace-path)
  • It will fail once because the “precise rol pooling” file has to be compiled through the ninja. Please check the handling error parts.
  • vot analysis --workspace $(workspace-path) RLT_DiMP --output json

Handling errors

  • “Process did not finish yet” or “Error during tracker execution: Exception when waiting for response: Unknown”-> re-try or “sudo rm -rf /tmp/torch_extensions/_prroi_pooling/
  • About “groundtruth.txt” -> check vot_path in the $(tracker-path)/pytracking/evaluation/local.py file
  • About “pytracking/evaluation/local.py” -> check and run install.sh
  • About “permission denied : “/tmp/torch_extensions/_prroi_pooling/” -> sudo chmod -R 777 /tmp/torch_extensions/_prroi_pooling/
  • About “No module named 'ltr.external.PreciseRoiPooling’” or “can not complie Precise RoI Pooling library error” -> cd $(tracker-path) -> rm -rf /ltr/external/PreciseRoiPooling -> git clone https://github.com/vacancy/PreciseRoIPooling.git ltr/external/PreciseRoIPooling
  • If nothing happens since the code just stopped -> sudo rm -rf /tmp/torch_extensions/_prroi_pooling/

Contact

If you have any questions, please feel free to contact [email protected]


Acknowledgments

  • The code is based on the PyTorch implementation of the DiMP-family.
  • This work was done while the first author was a visiting researcher at CMU.
  • This work was supported in part through NSF grant IIS-1650994, the financial assistance award 60NANB17D156 from U.S. Department of Commerce, National Institute of Standards and Technology (NIST) and by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DOI/IBC) contract number D17PC0034. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copy-right annotation/herein. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of NIST, IARPA, NSF, DOI/IBC, or the U.S. Government.

Citation

@InProceedings{Choi2020,
  author = {Choi, Seokeon and Lee, Junhyun and Lee, Yunsung and Hauptmann, Alexander},
  title = {Robust Long-Term Object Tracking via Improved Discriminative Model Prediction},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={0--0},
  year={2020}
}

Reference

  • [PrDiMP] Danelljan, Martin, Luc Van Gool, and Radu Timofte. "Probabilistic Regression for Visual Tracking." arXiv preprint arXiv:2003.12565 (2020).
  • [DiMP] Bhat, Goutam, et al. "Learning discriminative model prediction for tracking." Proceedings of the IEEE International Conference on Computer Vision. 2019.
  • [ATOM] Danelljan, Martin, et al. "Atom: Accurate tracking by overlap maximization." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
Owner
Seokeon Choi
I plan to receive a Ph.D. in Aug. 2021. I'm currently looking for a full-time job, residency program, or post-doc. linkedin.com/in/seokeon
Seokeon Choi
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023