[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Related tags

Deep LearningRLT-DIMP
Overview

Feel free to visit my homepage

Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper]


Presentation video

1-minute version (ENG)

Video Label

12-minute version (ENG)

Video Label


Summary

Abstract

We propose an improved discriminative model prediction method for robust long-term tracking based on a pre-trained short-term tracker. The baseline pre-trained short-term tracker is SuperDiMP which combines the bounding-box regressor of PrDiMP with the standard DiMP classifier. Our tracker RLT-DiMP improves SuperDiMP in the following three aspects: (1) Uncertainty reduction using random erasing: To make our model robust, we exploit an agreement from multiple images after erasing random small rectangular areas as a certainty. And then, we correct the tracking state of our model accordingly. (2) Random search with spatio-temporal constraints: we propose a robust random search method with a score penalty applied to prevent the problem of sudden detection at a distance. (3) Background augmentation for more discriminative feature learning: We augment various backgrounds that are not included in the search area to train a more robust model in the background clutter. In experiments on the VOT-LT2020 benchmark dataset, the proposed method achieves comparable performance to the state-of-the-art long-term trackers.


Framework


Baseline

  • We adopt the pre-trained short-term tracker which combines the bounding box regressor of PrDiMP with the standard DiMP classifier
  • This tracker's name is SuperDiMP and it can be downloaded on the DiMP-family's github page [link]

Contribution1: Uncertainty reduction using random erasing


Contribution2: Random search with spatio-temporal constraints


Contribution3: Background augmentation for more discriminative learning


Prerequisites

  • Ubuntu 18.04 / Python 3.6 / CUDA 10.0 / gcc 7.5.0
  • Need anaconda
  • Need GPU (more than 2GB, Sometimes it is a little more necessary depending on the situation.)
  • Unfortunately, "Precise RoI Pooling" included in the Dimp tracker only supports GPU (cuda) implementations.
  • Need root permission
  • All libraries in “install.sh” file (please check “how to install”)

How to install

  • Unzip files in $(tracker-path)
  • cd $(tracker-path)
  • bash install.sh $(anaconda-path) $(env-name) (Automatically create conda environment, If you don’t want to make more conda environments, run “bash install_in_conda.sh” after conda activation)
  • check pretrained model "super_dimp.pth.tar" in $(tracker-path)$/pytracking/networks/ (It should be downloaded by install.sh)
  • conda activate $(env-name)
  • make VOTLT2020 workspace (vot workspace votlt2020 --workspace $(workspace-path))
  • move trackers.ini to $(workspace-path)
  • move(or download) votlt2020 dataset to $(workspace-path)/sequences
  • set the VOT dataset directory ($(tracker-path)/pytracking/evaluation/local.py), vot_path should include ‘sequence’ word (e.g., $(vot-dataset-path)/sequences/), vot_path must be the absolute path (not relative path)
  • modify paths in the trackers.ini file, paths should include ‘pytracking’ word (e.g., $(tracker-path)/pytracking), paths must be absolute path (not relative path)
  • cd $(workspace-path)
  • vot evaluate RLT_DiMP --workspace $(workspace-path)
  • It will fail once because the “precise rol pooling” file has to be compiled through the ninja. Please check the handling error parts.
  • vot analysis --workspace $(workspace-path) RLT_DiMP --output json

Handling errors

  • “Process did not finish yet” or “Error during tracker execution: Exception when waiting for response: Unknown”-> re-try or “sudo rm -rf /tmp/torch_extensions/_prroi_pooling/
  • About “groundtruth.txt” -> check vot_path in the $(tracker-path)/pytracking/evaluation/local.py file
  • About “pytracking/evaluation/local.py” -> check and run install.sh
  • About “permission denied : “/tmp/torch_extensions/_prroi_pooling/” -> sudo chmod -R 777 /tmp/torch_extensions/_prroi_pooling/
  • About “No module named 'ltr.external.PreciseRoiPooling’” or “can not complie Precise RoI Pooling library error” -> cd $(tracker-path) -> rm -rf /ltr/external/PreciseRoiPooling -> git clone https://github.com/vacancy/PreciseRoIPooling.git ltr/external/PreciseRoIPooling
  • If nothing happens since the code just stopped -> sudo rm -rf /tmp/torch_extensions/_prroi_pooling/

Contact

If you have any questions, please feel free to contact [email protected]


Acknowledgments

  • The code is based on the PyTorch implementation of the DiMP-family.
  • This work was done while the first author was a visiting researcher at CMU.
  • This work was supported in part through NSF grant IIS-1650994, the financial assistance award 60NANB17D156 from U.S. Department of Commerce, National Institute of Standards and Technology (NIST) and by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DOI/IBC) contract number D17PC0034. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copy-right annotation/herein. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of NIST, IARPA, NSF, DOI/IBC, or the U.S. Government.

Citation

@InProceedings{Choi2020,
  author = {Choi, Seokeon and Lee, Junhyun and Lee, Yunsung and Hauptmann, Alexander},
  title = {Robust Long-Term Object Tracking via Improved Discriminative Model Prediction},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={0--0},
  year={2020}
}

Reference

  • [PrDiMP] Danelljan, Martin, Luc Van Gool, and Radu Timofte. "Probabilistic Regression for Visual Tracking." arXiv preprint arXiv:2003.12565 (2020).
  • [DiMP] Bhat, Goutam, et al. "Learning discriminative model prediction for tracking." Proceedings of the IEEE International Conference on Computer Vision. 2019.
  • [ATOM] Danelljan, Martin, et al. "Atom: Accurate tracking by overlap maximization." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
Owner
Seokeon Choi
I plan to receive a Ph.D. in Aug. 2021. I'm currently looking for a full-time job, residency program, or post-doc. linkedin.com/in/seokeon
Seokeon Choi
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021