[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Related tags

Deep LearningRLT-DIMP
Overview

Feel free to visit my homepage

Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper]


Presentation video

1-minute version (ENG)

Video Label

12-minute version (ENG)

Video Label


Summary

Abstract

We propose an improved discriminative model prediction method for robust long-term tracking based on a pre-trained short-term tracker. The baseline pre-trained short-term tracker is SuperDiMP which combines the bounding-box regressor of PrDiMP with the standard DiMP classifier. Our tracker RLT-DiMP improves SuperDiMP in the following three aspects: (1) Uncertainty reduction using random erasing: To make our model robust, we exploit an agreement from multiple images after erasing random small rectangular areas as a certainty. And then, we correct the tracking state of our model accordingly. (2) Random search with spatio-temporal constraints: we propose a robust random search method with a score penalty applied to prevent the problem of sudden detection at a distance. (3) Background augmentation for more discriminative feature learning: We augment various backgrounds that are not included in the search area to train a more robust model in the background clutter. In experiments on the VOT-LT2020 benchmark dataset, the proposed method achieves comparable performance to the state-of-the-art long-term trackers.


Framework


Baseline

  • We adopt the pre-trained short-term tracker which combines the bounding box regressor of PrDiMP with the standard DiMP classifier
  • This tracker's name is SuperDiMP and it can be downloaded on the DiMP-family's github page [link]

Contribution1: Uncertainty reduction using random erasing


Contribution2: Random search with spatio-temporal constraints


Contribution3: Background augmentation for more discriminative learning


Prerequisites

  • Ubuntu 18.04 / Python 3.6 / CUDA 10.0 / gcc 7.5.0
  • Need anaconda
  • Need GPU (more than 2GB, Sometimes it is a little more necessary depending on the situation.)
  • Unfortunately, "Precise RoI Pooling" included in the Dimp tracker only supports GPU (cuda) implementations.
  • Need root permission
  • All libraries in “install.sh” file (please check “how to install”)

How to install

  • Unzip files in $(tracker-path)
  • cd $(tracker-path)
  • bash install.sh $(anaconda-path) $(env-name) (Automatically create conda environment, If you don’t want to make more conda environments, run “bash install_in_conda.sh” after conda activation)
  • check pretrained model "super_dimp.pth.tar" in $(tracker-path)$/pytracking/networks/ (It should be downloaded by install.sh)
  • conda activate $(env-name)
  • make VOTLT2020 workspace (vot workspace votlt2020 --workspace $(workspace-path))
  • move trackers.ini to $(workspace-path)
  • move(or download) votlt2020 dataset to $(workspace-path)/sequences
  • set the VOT dataset directory ($(tracker-path)/pytracking/evaluation/local.py), vot_path should include ‘sequence’ word (e.g., $(vot-dataset-path)/sequences/), vot_path must be the absolute path (not relative path)
  • modify paths in the trackers.ini file, paths should include ‘pytracking’ word (e.g., $(tracker-path)/pytracking), paths must be absolute path (not relative path)
  • cd $(workspace-path)
  • vot evaluate RLT_DiMP --workspace $(workspace-path)
  • It will fail once because the “precise rol pooling” file has to be compiled through the ninja. Please check the handling error parts.
  • vot analysis --workspace $(workspace-path) RLT_DiMP --output json

Handling errors

  • “Process did not finish yet” or “Error during tracker execution: Exception when waiting for response: Unknown”-> re-try or “sudo rm -rf /tmp/torch_extensions/_prroi_pooling/
  • About “groundtruth.txt” -> check vot_path in the $(tracker-path)/pytracking/evaluation/local.py file
  • About “pytracking/evaluation/local.py” -> check and run install.sh
  • About “permission denied : “/tmp/torch_extensions/_prroi_pooling/” -> sudo chmod -R 777 /tmp/torch_extensions/_prroi_pooling/
  • About “No module named 'ltr.external.PreciseRoiPooling’” or “can not complie Precise RoI Pooling library error” -> cd $(tracker-path) -> rm -rf /ltr/external/PreciseRoiPooling -> git clone https://github.com/vacancy/PreciseRoIPooling.git ltr/external/PreciseRoIPooling
  • If nothing happens since the code just stopped -> sudo rm -rf /tmp/torch_extensions/_prroi_pooling/

Contact

If you have any questions, please feel free to contact [email protected]


Acknowledgments

  • The code is based on the PyTorch implementation of the DiMP-family.
  • This work was done while the first author was a visiting researcher at CMU.
  • This work was supported in part through NSF grant IIS-1650994, the financial assistance award 60NANB17D156 from U.S. Department of Commerce, National Institute of Standards and Technology (NIST) and by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DOI/IBC) contract number D17PC0034. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copy-right annotation/herein. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of NIST, IARPA, NSF, DOI/IBC, or the U.S. Government.

Citation

@InProceedings{Choi2020,
  author = {Choi, Seokeon and Lee, Junhyun and Lee, Yunsung and Hauptmann, Alexander},
  title = {Robust Long-Term Object Tracking via Improved Discriminative Model Prediction},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={0--0},
  year={2020}
}

Reference

  • [PrDiMP] Danelljan, Martin, Luc Van Gool, and Radu Timofte. "Probabilistic Regression for Visual Tracking." arXiv preprint arXiv:2003.12565 (2020).
  • [DiMP] Bhat, Goutam, et al. "Learning discriminative model prediction for tracking." Proceedings of the IEEE International Conference on Computer Vision. 2019.
  • [ATOM] Danelljan, Martin, et al. "Atom: Accurate tracking by overlap maximization." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
Owner
Seokeon Choi
I plan to receive a Ph.D. in Aug. 2021. I'm currently looking for a full-time job, residency program, or post-doc. linkedin.com/in/seokeon
Seokeon Choi
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021