A collection of SOTA Image Classification Models in PyTorch

Overview

SOTA Image Classification Models in PyTorch

Intended for easy to use and integrate SOTA image classification models into object detection, semantic segmentation, pose estimation, etc.

Open In Colab

visiontransformer

Model Zoo

Model ImageNet-1k Top-1 Acc
(%)
Params
(M)
GFLOPs Variants & Weights
MicroNet 51.4|59.4|62.5 2|2|3 6M|12M|21M M1|M2|M3
MobileFormer 76.7|77.9|79.3 9|11|14 214M|294M|508M 214|294|508
GFNet 80.1|81.5|82.9 15|32|54 2|5|8 T|S|B
PVTv2 78.7|82.0|83.6 14|25|63 2|4|10 B1|B2|B4
ResT 79.6|81.6|83.6 14|30|52 2|4|8 S|B|L
Conformer 81.3|83.4|84.1 24|38|83 5|11|23 T|S|B
Shuffle 82.4|83.6|84.0 28|50|88 5|9|16 T|S|B
CSWin 82.7|83.6|84.2 23|35|78 4|7|15 T|S|B
CycleMLP 81.6|83.0|83.2 27|52|76 4|10|12 B2|B4|B5
HireMLP 81.8|83.1|83.4 33|58|96 4|8|14 S|B|L
sMLP 81.9|83.1|83.4 24|49|66 5|10|14 T|S|B
XCiT 80.4|83.9|84.3 12|48|84 2|9|16 T|S|M
VOLO 84.2|85.2|85.4 27|59|86 7|14|21 D1|D2|D3
Table Notes
  • Image size is 224x224. EfficientNetv2 uses progressive learning (image size from 128 to 380).
  • All models' weights are from official repositories.
  • Only models trained on ImageNet1k are compared.
  • (Parameters > 200M) Models are not included.
  • PVTv2, ResT, Conformer, XCiT and CycleMLP models work with any image size.

Usage

Requirements (click to expand)
  • python >= 3.6
  • torch >= 1.8.1
  • torchvision >= 0.9.1

Other requirements can be installed with pip install -r requirements.txt.


Show Available Models
$ python tools/show.py

A table with model names and variants will be shown:

Model Names    Model Variants
-------------  --------------------------------
ResNet         ['18', '34', '50', '101', '152']
MicroNet       ['M1', 'M2', 'M3']
GFNet          ['T', 'S', 'B']
PVTv2          ['B1', 'B2', 'B3', 'B4', 'B5']
ResT           ['S', 'B', 'L']
Conformer      ['T', 'S', 'B']
Shuffle        ['T', 'S', 'B']
CSWin          ['T', 'S', 'B', 'L']
CycleMLP       ['B1', 'B2', 'B3', 'B4', 'B5']
XciT           ['T', 'S', 'M', 'L']
VOLO           ['D1', 'D2', 'D3', 'D4']
Inference
  • Download your desired model's weights from Model Zoo table.
  • Change MODEL parameters and TEST parameters in config file here. And run the the following command.
$ python tools/infer.py --cfg configs/test.yaml

You will see an output similar to this:

File: assests\dog.jpg >>>>> Golden retriever

Training (click to expand)
$ python tools/train.py --cfg configs/train.yaml

Evaluate (click to expand)
$ python tools/val.py --cfg configs/train.yaml

Fine-tune (click to expand)

Fine-tune on CIFAR-10:

$ python tools/finetune.py --cfg configs/finetune.yaml

References (click to expand)

Citations (click to expand)
@article{zhql2021ResT,
  title={ResT: An Efficient Transformer for Visual Recognition},
  author={Zhang, Qinglong and Yang, Yubin},
  journal={arXiv preprint arXiv:2105.13677v3},
  year={2021}
}

@article{peng2021conformer,
  title={Conformer: Local Features Coupling Global Representations for Visual Recognition}, 
  author={Zhiliang Peng and Wei Huang and Shanzhi Gu and Lingxi Xie and Yaowei Wang and Jianbin Jiao and Qixiang Ye},
  journal={arXiv preprint arXiv:2105.03889},
  year={2021},
}

@misc{dong2021cswin,
  title={CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows}, 
  author={Xiaoyi Dong and Jianmin Bao and Dongdong Chen and Weiming Zhang and Nenghai Yu and Lu Yuan and Dong Chen and Baining Guo},
  year={2021},
  eprint={2107.00652},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{chen2021cyclemlp,
  title={CycleMLP: A MLP-like Architecture for Dense Prediction}, 
  author={Shoufa Chen and Enze Xie and Chongjian Ge and Ding Liang and Ping Luo},
  year={2021},
  eprint={2107.10224},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{wang2021pvtv2,
  title={PVTv2: Improved Baselines with Pyramid Vision Transformer}, 
  author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and Tong Lu and Ping Luo and Ling Shao},
  year={2021},
  eprint={2106.13797},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{elnouby2021xcit,
  title={XCiT: Cross-Covariance Image Transformers}, 
  author={Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Hervé Jegou},
  year={2021},
  eprint={2106.09681},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{yuan2021volo,
  title={VOLO: Vision Outlooker for Visual Recognition}, 
  author={Li Yuan and Qibin Hou and Zihang Jiang and Jiashi Feng and Shuicheng Yan},
  year={2021},
  eprint={2106.13112},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{yan2020micronet,
  title={MicroNet for Efficient Language Modeling}, 
  author={Zhongxia Yan and Hanrui Wang and Demi Guo and Song Han},
  year={2020},
  eprint={2005.07877},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}

@misc{chen2021mobileformer,
  title={Mobile-Former: Bridging MobileNet and Transformer}, 
  author={Yinpeng Chen and Xiyang Dai and Dongdong Chen and Mengchen Liu and Xiaoyi Dong and Lu Yuan and Zicheng Liu},
  year={2021},
  eprint={2108.05895},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@article{rao2021global,
  title={Global Filter Networks for Image Classification},
  author={Rao, Yongming and Zhao, Wenliang and Zhu, Zheng and Lu, Jiwen and Zhou, Jie},
  journal={arXiv preprint arXiv:2107.00645},
  year={2021}
}

@article{huang2021shuffle,
  title={Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer},
  author={Huang, Zilong and Ben, Youcheng and Luo, Guozhong and Cheng, Pei and Yu, Gang and Fu, Bin},
  journal={arXiv preprint arXiv:2106.03650},
  year={2021}
}

You might also like...
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

SOTA model in CIFAR10
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

A toolkit for document-level event extraction, containing some SOTA model implementations
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Collection of generative models in Pytorch version.
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer Implement face detection, and age and gender classification, and emotion classification.
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Releases(v0.2.0)
Owner
sithu3
AI Developer
sithu3
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023