Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Overview

Auto-Seg-Loss

By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai

This is the official implementation of the ICLR 2021 paper Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation.

Introduction

TL; DR.

Auto Seg-Loss is the first general framework for searching surrogate losses for mainstream semantic segmentation metrics.

Abstract.

Designing proper loss functions is essential in training deep networks. Especially in the field of semantic segmentation, various evaluation metrics have been proposed for diverse scenarios. Despite the success of the widely adopted cross-entropy loss and its variants, the mis-alignment between the loss functions and evaluation metrics degrades the network performance. Meanwhile, manually designing loss functions for each specific metric requires expertise and significant manpower. In this paper, we propose to automate the design of metric-specific loss functions by searching differentiable surrogate losses for each metric. We substitute the non-differentiable operations in the metrics with parameterized functions, and conduct parameter search to optimize the shape of loss surfaces. Two constraints are introduced to regularize the search space and make the search efficient. Extensive experiments on PASCAL VOC and Cityscapes demonstrate that the searched surrogate losses outperform the manually designed loss functions consistently. The searched losses can generalize well to other datasets and networks.

ASL-overview ASL-results

License

This project is released under the Apache 2.0 license.

Citing Auto Seg-Loss

If you find Auto Seg-Loss useful in your research, please consider citing:

@inproceedings{li2020auto,
  title={Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation},
  author={Li, Hao and Tao, Chenxin and Zhu, Xizhou and Wang, Xiaogang and Huang, Gao and Dai, Jifeng},
  booktitle={ICLR},
  year={2021}
}

Configs

PASCAL VOC Search experiments

Target Metric mIoU FWIoU mAcc gAcc BIoU BF1
Parameterization bezier bezier bezier bezier bezier bezier
URL config config config config config config

PASCAL VOC Re-training experiments

Target Metric mIoU FWIoU mAcc gAcc BIoU BF1
Cross Entropy 78.69 91.31 87.31 95.17 70.61 65.30
ASL 80.97 91.93 92.95 95.22 79.27 74.83
URL config
log
config
log
config
log
config
log
config
log
config
log

Note:

1. The search experiments are conducted with R50-DeepLabV3+.

2. The re-training experiments are conducted with R101-DeeplabV3+.

Installation

Our implementation is based on MMSegmentation.

Prerequisites

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n auto_segloss python=3.8 -y

    Then, activate the environment:

    conda activate auto_segloss
  • PyTorch>=1.7.0, torchvision>=0.8.0 (following official instructions).

    For example, if your CUDA version is 10.1, you could install pytorch and torchvision as follows:

    conda install pytorch=1.8.0 torchvision=0.9.0 cudatoolkit=10.1 -c pytorch
  • MMCV>=1.3.0 (following official instruction).

    We recommend installing the pre-built mmcv-full. For example, if your CUDA version is 10.1 and pytorch version is 1.8.0, you could run:

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html

Installing the modified mmsegmentation

git clone https://github.com/fundamentalvision/Auto-Seg-Loss.git
cd Auto-Seg-Loss
pip install -e .

Usage

Dataset preparation

Please follow the official guide of MMSegmentation to organize the datasets. It's highly recommended to symlink the dataset root to Auto-Seg-Loss/data. The recommended data structure is as follows:

Auto-Seg-Loss
├── mmseg
├── ASL_search
└── data
    └── VOCdevkit
        ├── VOC2012
        └── VOCaug

Training models with the provided parameters

The re-training command format is

./ASL_retrain.sh {CONFIG_NAME} [{NUM_GPUS}] [{SEED}]

For example, the command for training a ResNet-101 DeepLabV3+ with 4 GPUs for mIoU is as follows:

./ASL_retrain.sh miou_bezier_10k.py 4

You can also follow the provided configs to modify the mmsegmentation configs, and use Auto Seg-Loss for training other models on other datasets.

Searching for semantic segmentation metrics

The search command format is

./ASL_search.sh {CONFIG_NAME} [{NUM_GPUS}] [{SEED}]

For example, the command for searching for surrogate loss functions for mIoU with 8 GPUs is as follows:

./ASL_search.sh miou_bezier_lr=0.2_eps=0.2.py 8
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022