PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

Related tags

Deep LearningIBRNet
Overview

IBRNet: Learning Multi-View Image-Based Rendering

PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering
Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, Thomas Funkhouser
CVPR 2021

project page | paper | data & model

Demo

Installation

Clone this repo with submodules:

git clone --recurse-submodules https://github.com/googleinterns/IBRNet
cd IBRNet/

The code is tested with Python3.7, PyTorch == 1.5 and CUDA == 10.2. We recommend you to use anaconda to make sure that all dependencies are in place. To create an anaconda environment:

conda env create -f environment.yml
conda activate ibrnet

Datasets

1. Training datasets

├──data/
    ├──ibrnet_collected_1/
    ├──ibrnet_collected_2/
    ├──real_iconic_noface/
    ├──spaces_dataset/
    ├──RealEstate10K-subset/
    ├──google_scanned_objects/

Please first cd data/, and then download datasets into data/ following the instructions below. The organization of the datasets should be the same as above.

(a) Our captures

We captured 67 forward-facing scenes (each scene contains 20-60 images). To download our data ibrnet_collected.zip (4.1G) for training, run:

gdown https://drive.google.com/uc?id=1rkzl3ecL3H0Xxf5WTyc2Swv30RIyr1R_
unzip ibrnet_collected.zip

P.S. We've captured some more scenes in ibrnet_collected_more.zip, but we didn't include them for training. Feel free to download them if you would like more scenes for your task, but you wouldn't need them to reproduce our results.

(b) LLFF released scenes

Download and process real_iconic_noface.zip (6.6G) using the following commands:

# download 
gdown https://drive.google.com/uc?id=1ThgjloNt58ZdnEuiCeRf9tATJ-HI0b01
unzip real_iconic_noface.zip

# [IMPORTANT] remove scenes that appear in the test set
cd real_iconic_noface/
rm -rf data2_fernvlsb data2_hugetrike data2_trexsanta data3_orchid data5_leafscene data5_lotr data5_redflower
cd ../

(c) Spaces Dataset

Download spaces dataset by:

git clone https://github.com/augmentedperception/spaces_dataset

(d) RealEstate10K

The full RealEstate10K dataset is very large and can be difficult to download. Hence, we provide a subset of RealEstate10K training scenes containing only 200 scenes. In our experiment, we found using more scenes from RealEstate10K only provides marginal improvement. To download our camera files (2MB):

gdown https://drive.google.com/uc?id=1IgJIeCPPZ8UZ529rN8dw9ihNi1E9K0hL
unzip RealEstate10K_train_cameras_200.zip -d RealEstate10K-subset

Besides the camera files, you also need to download the corresponding video frames from YouTube. You can download the frames (29G) by running the following commands. The script uses ffmpeg to extract frames, so please make sure you have ffmpeg installed.

git clone https://github.com/qianqianwang68/RealEstate10K_Downloader
cd RealEstate10K_Downloader
python generate_dataset.py train
cd ../

(e) Google Scanned Objects

Google Scanned Objects contain 1032 diffuse objects with various shapes and appearances. We use gaps to render these objects for training. Each object is rendered at 512 × 512 pixels from viewpoints on a quarter of the sphere. We render 250 views for each object. To download our renderings (7.5GB), run:

gdown https://drive.google.com/uc?id=1w1Cs0yztH6kE3JIz7mdggvPGCwIKkVi2
unzip google_scanned_objects_renderings.zip

2. Evaluation datasets

├──data/
    ├──deepvoxels/
    ├──nerf_synthetic/
    ├──nerf_llff_data/

The evaluation datasets include DeepVoxel synthetic dataset, NeRF realistic 360 dataset and the real forward-facing dataset. To download all three datasets (6.7G), run the following command under data/ directory:

bash download_eval_data.sh

Evaluation

First download our pretrained model under the project root directory:

gdown https://drive.google.com/uc?id=165Et85R8YnL-5NcehG0fzqsnAUN8uxUJ
unzip pretrained_model.zip

You can use eval/eval.py to evaluate the pretrained model. For example, to obtain the PSNR, SSIM and LPIPS on the fern scene in the real forward-facing dataset, you can first specify your paths in configs/eval_llff.txt and then run:

cd eval/
python eval.py --config ../configs/eval_llff.txt

Rendering videos of smooth camera paths

You can use render_llff_video.py to render videos of smooth camera paths for the real forward-facing scenes. For example, you can first specify your paths in configs/eval_llff.txt and then run:

cd eval/
python render_llff_video.py --config ../configs/eval_llff.txt

You can also capture your own data of forward-facing scenes and synthesize novel views using our method. Please follow the instructions from LLFF on how to capture and process the images.

Training

We strongly recommend you to train the model with multiple GPUs:

# this example uses 8 GPUs (nproc_per_node=8) 
python -m torch.distributed.launch --nproc_per_node=8 train.py --config configs/pretrain.txt

Alternatively, you can train with a single GPU by setting distributed=False in configs/pretrain.txt and running:

python train.py --config configs/pretrain.txt

Finetuning

To finetune on a specific scene, for example, fern, using the pretrained model, run:

# this example uses 2 GPUs (nproc_per_node=2) 
python -m torch.distributed.launch --nproc_per_node=2 train.py --config configs/finetune_llff.txt

Additional information

  • Our current implementation is not well-optimized in terms of the time efficiency at inference. Rendering a 1000x800 image can take from 30s to over a minute depending on specific GPU models. Please make sure to maximize the GPU memory utilization by increasing the size of the chunk to reduce inference time. You can also try to decrease the number of input source views (but subject to performance loss).
  • If you want to create and train on your own datasets, you can implement your own Dataset class following our examples in ibrnet/data_loaders/. You can verify the camera poses using data_verifier.py in ibrnet/data_loaders/.
  • Since the evaluation datasets are either object-centric or forward-facing scenes, our provided view selection methods are very simple (based on either viewpoints or camera locations). If you want to evaluate our method on new scenes with other kinds of camera distributions, you might need to implement your own view selection methods to identify the most effective source views.
  • If you have any questions, you can contact [email protected].

Citation

@inproceedings{wang2021ibrnet,
  author    = {Wang, Qianqian and Wang, Zhicheng and Genova, Kyle and Srinivasan, Pratul and Zhou, Howard  and Barron, Jonathan T. and Martin-Brualla, Ricardo and Snavely, Noah and Funkhouser, Thomas},
  title     = {IBRNet: Learning Multi-View Image-Based Rendering},
  booktitle = {CVPR},
  year      = {2021}
}

Owner
Google Interns
Google Interns
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022