Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Overview

Crowd-Kit: Computational Quality Control for Crowdsourcing

GitHub Tests Codecov

Documentation

Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets. We strive to implement functionality that simplifies working with crowdsourced data.

Currently, Crowd-Kit contains:

  • implementations of commonly-used aggregation methods for categorical, pairwise, textual, and segmentation responses
  • metrics of uncertainty, consistency, and agreement with aggregate
  • loaders for popular crowdsourced datasets

The library is currently in a heavy development state, and interfaces are subject to change.

Installing

Installing Crowd-Kit is as easy as pip install crowd-kit

Getting Started

This example shows how to use Crowd-Kit for categorical aggregation using the classical Dawid-Skene algorithm.

First, let us do all the necessary imports.

from crowdkit.aggregation import DawidSkene
from crowdkit.datasets import load_dataset

import pandas as pd

Then, you need to read your annotations into Pandas DataFrame with columns task, performer, label. Alternatively, you can download an example dataset.

df = pd.read_csv('results.csv')  # should contain columns: task, performer, label
# df, ground_truth = load_dataset('relevance-2')  # or download an example dataset

Then you can aggregate the performer responses as easily as in scikit-learn:

aggregated_labels = DawidSkene(n_iter=100).fit_predict(df)

More usage examples

Implemented Aggregation Methods

Below is the list of currently implemented methods, including the already available () and in progress ( 🟡 ).

Categorical Responses

Method Status
Majority Vote
Dawid-Skene
Gold Majority Vote
M-MSR
Wawa
Zero-Based Skill
GLAD
BCC 🟡

Textual Responses

Method Status
RASA
HRRASA
ROVER

Image Segmentation

Method Status
Segmentation MV
Segmentation RASA
Segmentation EM

Pairwise Comparisons

Method Status
Bradley-Terry
Noisy Bradley-Terry

Citation

@inproceedings{HCOMP2021/CrowdKit,
  author    = {Ustalov, Dmitry and Pavlichenko, Nikita and Losev, Vladimir and Giliazev, Iulian and Tulin, Evgeny},
  title     = {{A General-Purpose Crowdsourcing Computational Quality Control Toolkit for Python}},
  year      = {2021},
  booktitle = {The Ninth AAAI Conference on Human Computation and Crowdsourcing: Works-in-Progress and Demonstration Track},
  series    = {HCOMP~2021},
  eprint    = {2109.08584},
  eprinttype = {arxiv},
  eprintclass = {cs.HC},
  url       = {https://www.humancomputation.com/assets/wips_demos/HCOMP_2021_paper_85.pdf},
  language  = {english},
}

Questions and Bug Reports

License

© YANDEX LLC, 2020-2021. Licensed under the Apache License, Version 2.0. See LICENSE file for more details.

Comments
  • Crowd-Kit Learning

    Crowd-Kit Learning

    This is just an example of what this subpackage will contain.

    We need to configure setup.cfg and add new tests. Here I suggest to discuss the concept.

    opened by pilot7747 10
  • Fix the documentation generation issues

    Fix the documentation generation issues

    Stick to YAML files hosted in https://github.com/Toloka/docs and use the proper includes.

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [x] My change requires a change to the documentation.
    • [x] I have updated the documentation accordingly.
    • [ ] I have added tests to cover my changes.
    • [ ] All new and existing tests passed.
    documentation enhancement 
    opened by dustalov 9
  • Add MACE

    Add MACE

    Is it possible that you add MACE ? It is often used in my field but there is only a Java implementation that is hard to integrate into Python projects.

    enhancement good first issue 
    opened by jcklie 4
  • Add MACE aggregation model

    Add MACE aggregation model

    I have added the MACE aggregation model. https://www.cs.cmu.edu/~hovy/papers/13HLT-MACE.pdf

    Description

    Based on the original VB inference implementation, I wrote it in Python.

    Connected issues (if any)

    https://github.com/Toloka/crowd-kit/issues/5

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [x] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [x] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    opened by pilot7747 3
  • Documentation updates

    Documentation updates

    Updated index.md and the Classification section:

    1. added extra information to the models descriptions;
    2. added descriptions for parameters;
    3. fixed error and typos in descriptions.
    opened by Natalyl3 2
  • Binary Relevance aggregation

    Binary Relevance aggregation

    Description

    I have added code for Binary Relevance aggregation - simple method for multi-label classification. This approach treats each label as a class in binary classification task and aggregates it separately.

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [x] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    opened by denaxen 2
  • Use mypy --strict

    Use mypy --strict

    Description

    This pull request enforces a stricter set of mypy type checks by enabling the strict mode. It also fixes several type inconsistencies. As the NumPy type annotations were introduced in version 1.20 (January 2021), some Crowd-Kit installations might broke, but I believe it is a worthy contribution.

    Connected issues (if any)

    Types of changes

    • [x] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [x] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    enhancement 
    opened by dustalov 2
  • Run Jupyter notebooks with tests

    Run Jupyter notebooks with tests

    Description

    This pull request runs the Jupyter notebooks with examples on the current version of Crowd-Kit with the rest of the test suite on GitHub Actions.

    Connected issues (if any)

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    enhancement good first issue 
    opened by dustalov 2
  • Dramatically improve the code maintainability

    Dramatically improve the code maintainability

    This pull request is probably the best thing that could happen to Crowd-Kit code maintainability.

    Description

    In this pull request, we switch from unnecessarily verbose Python stub files to more convenient inline type annotations. During this, many type annotations were fixed. We also removed the manage_docstring decorator and the corresponding utility functions.

    I think this change might break the documentation generation process. We will release a new version of Crowd-Kit only after this is fixed.

    Connected issues (if any)

    Types of changes

    • [x] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [x] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [x] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    bug documentation enhancement 
    opened by dustalov 2
  • Add header and LM-based aggregation item

    Add header and LM-based aggregation item

    Description

    This pull request makes README.md nicer. It adds the missing language model-based textual aggregation method.

    Connected issues (if any)

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [ ] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    documentation 
    opened by dustalov 2
  • Renamed columns?

    Renamed columns?

    Hi, the guide says

    df = pd.read_csv('results.csv') # should contain columns: task, performer, label

    but when I load this file, then the second column is worker and not performer. I had used crowdkit with dataframes that had columns: task, performer, label, but after an update, it broke.

    opened by jcklie 2
  • Ordinal Labels

    Ordinal Labels

    Is it possible to support aggregation of ordinal labels as a part of this toolkit via this reduction algorithm.

    • Labels are categorical but have an ordering defined 1 < ... < K.
    • The K class ordinal labels are transformed into K−1 binary class label data.
    • Each of the binary task is then aggregated via crowdkit to estimate Pr[yi > c] for c = 1,...,K −1.
    • The probability of the actual class values can then be obtained as Pr[yi = c] = Pr[yi > c−1 and yi ≤ c] = Pr[yi > c−1]−Pr[yi > c].
    • The class with the maximum probability is assigned to the instance
    enhancement 
    opened by vikasraykar 2
Releases(v1.2.0)
Owner
Toloka
Data labeling platform for ML
Toloka
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022