PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Overview

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning

PyTorch code for the ICCV 2021 paper:
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning
James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, Zsolt Kira
International Conference on Computer Vision (ICCV), 2021
[arXiv] [pdf] [project]

Abstract

Modern computer vision applications suffer from catastrophic forgetting when incrementally learning new concepts over time. The most successful approaches to alleviate this forgetting require extensive replay of previously seen data, which is problematic when memory constraints or data legality concerns exist. In this work, we consider the high-impact problem of Data-Free Class-Incremental Learning (DFCIL), where an incremental learning agent must learn new concepts over time without storing generators or training data from past tasks. One approach for DFCIL is to replay synthetic images produced by inverting a frozen copy of the learner's classification model, but we show this approach fails for common class-incremental benchmarks when using standard distillation strategies. We diagnose the cause of this failure and propose a novel incremental distillation strategy for DFCIL, contributing a modified cross-entropy training and importance-weighted feature distillation, and show that our method results in up to a 25.1% increase in final task accuracy (absolute difference) compared to SOTA DFCIL methods for common class-incremental benchmarks. Our method even outperforms several standard replay based methods which store a coreset of images.

Installation

Prerequisites

  • python == 3.6
  • torch == 1.0.1
  • torchvision >= 0.2.1

Setup

Datasets

Download/Extract the following datasets to the dataset folder under the project root directory.

  • For CIFAR-10 and CIFAR-100, download the python version dataset here.

Training

All commands should be run under the project root directory.

sh experiments/cifar100-fivetask.sh # tables 1,2
sh experiments/cifar100-tentask.sh # tables 1,2
sh experiments/cifar100-twentytask.sh # tables 1,2

Results

Results are generated for various task sizes. See the main text for full details. Numbers represent final accuracy in three runs (higher the better).

CIFAR-100 (no coreset)

tasks 5 10 20
UB 69.9 ± 0.2 69.9 ± 0.2 69.9 ± 0.2
Base 16.4 ± 0.4 8.8 ± 0.1 4.4 ± 0.3
LwF 17.0 ± 0.1 9.2 ± 0.0 4.7 ± 0.1
LwF.MC 32.5 ± 1.0 17.1 ± 0.1 7.7 ± 0.5
DGR 14.4 ± 0.4 8.1 ± 0.1 4.1 ± 0.3
DeepInversion 18.8 ± 0.3 10.9 ± 0.6 5.7 ± 0.3
Ours 43.9 ± 0.9 33.7 ± 1.2 20.0 ± 1.4

CIFAR-100 (with 2000 image coreset)

tasks 5 10 20
UB 69.9 ± 0.2 69.9 ± 0.2 69.9 ± 0.2
Naive Rehearsal 34.0 ± 0.2 24.0 ± 1.0 14.9 ± 0.7
LwF 39.4 ± 0.3 27.4 ± 0.8 16.6 ± 0.4
E2E 47.4 ± 0.8 38.4 ± 1.3 32.7 ± 1.9
BiC 53.7 ± 0.4 45.9 ± 1.8 37.5 ± 3.2
Ours (no coreset) 43.9 ± 0.9 33.7 ± 1.2 20.0 ± 1.4

Acknowledgement

This work is supported by Samsung Research America.

Citation

If you found our work useful for your research, please cite our work:

@article{smith2021always,
  author    = {Smith, James and Hsu, Yen-Chang and Balloch, Jonathan and Shen, Yilin and Jin, Hongxia and Kira, Zsolt},
  title     = {Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month     = {October},
  year      = {2021},
  pages     = {9374-9384}
}
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022