Code for ViTAS_Vision Transformer Architecture Search

Overview

Vision Transformer Architecture Search

This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search for pure transformer architectures, which do not include CNN convolution or indutive bias related operations.

Requirements

  1. torch>=1.4.0
  2. torchvision
  3. pymoo==0.3.0 for evaluation --> pip install pymoo==0.3.0 --user
  4. change the 'data_dir' in yaml from search/retrain/inference directory to your ImageNet data path, note that each yaml have four 'data_dir' for training the supernet (train data), evolutionary sampling with supernet (val data), retraining the searched architecture (train data), and test the trained architecture (test data).
  5. This code is based on slurm for distributed training.

Reproducing

To implement the search with ViTAS.

The supernet training process of ViTAS will be updated within two weeks after a detailed test.

We will update more information about ViTAS, please stay tuned on this repository.

To retrain our searched models.

For example, train our 1.3G architecture searched by ViTAS.

chmod +x ./script/command.sh

chmod +x ./script/vit_1.3G_retrain.sh

./script/vit_1.3G_retrain.sh

To inference our searched results.

For example, inference our 1.3G architecture searched by ViTAS.

chmod +x ./script/command.sh

chmod +x ./script/vit_1.3G_inference.sh

./script/vit_1.3G_inference.sh

Results of searched architectures with ViTAS

In each yaml, the 'save_path' in 'search' controls all paths (eg., line 34 in inference/ViTAS_1.3G_inference.yaml). The code will automatically build the path of 'save_path'+'search/checkpoint/' for your supernet, and also 'save_path' + 'retrain/checkpoint' for retraining the searched architecture.

Therefore, to inference the provided pth file, you need to build a path of 'save_path/retrain/checkpoint/download.pth' ('save_path' is specified in yaml and download.pth is provided in below table).

The extract code for Baidu Cloud is 'c7gn'.

Model name FLOPs Top 1 Top 5 Download
ViTAS-A 858M 71.1% 89.8% Google Drive, Baidu Cloud
ViTAS-B 1.0G 72.4% 90.6% Google Drive, Baidu Cloud
ViTAS-C 1.3G 74.7% 92.0% Google Drive, Baidu Cloud
ViTAS-E 2.7G 77.4% 93.8% Google Drive, Baidu Cloud
ViTAS-F 4.9G 80.6% 95.1% Google Drive, Baidu Cloud

For a fair comparison of Deit and ViT architectures, we also provided their results in below table:

Model name FLOPs Top 1 Top 5
DeiT-Ti 1.3G 72.2 80.1
DeiT-S 4.6G 79.8 85.7

Citation

If you find that ViTAS interesting and help your research, please consider citing it:

@misc{su2021vision,
      title={Vision Transformer Architecture Search}, 
      author={Xiu Su and Shan You and Jiyang Xie and Mingkai Zheng and Fei Wang and Chen Qian and Changshui Zhang and Xiaogang Wang and Chang Xu},
      year={2021},
      eprint={2106.13700},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Just lazy
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Atif Hassan 103 Dec 14, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022