Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

Overview

NeurIPS 2020 SEVIR

Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology

Requirements

To test pretrained models and train on single GPU, this requires

Distributed (multi-GPU) training of these models requires

  • Horovod 0.19.0 or higher for distributed training. See Horovod

To visualize results with statelines as is done in the paper, a geospatial plotting library is required. We recommend either of the following:

  • basemap
  • cartopy

To run the rainymotion benchmark, you'll also need to install this module. See https://rainymotion.readthedocs.io/en/latest/

Downloading pretrained models

To download the models trained in the paper, run the following

cd models/
python download_models.py

See the notebooks directory for how to apply these models to some sample test data.

Downloading SEVIR

Download information and additional resources for SEVIR data are available at https://registry.opendata.aws/sevir/.

To download, install AWS CLI, and download all of SEVIR (~1TB) to your current directory run

aws s3 sync --no-sign-request s3://sevir .

Extracting training/testing datasets

The models implemented in the paper are implemented on training data collected prior to June 1, 2019, and testing data collected after June 1, 2019. These datasets can be extrated from SEVIR by running the following scripts (one for nowcasting, and one for synrad). Depending on your CPU and speed of your filesystem, these scripts may take several hours to run.

cd src/data

# Generates nowcast training & testing datasets
python make_nowcast_dataset.py --sevir_data ../../data/sevir --sevir_catalog ../../data/CATALOG.csv --output_location ../../data/interim/

# Generate synrad training & testing datasets
python make_synrad_dataset.py --sevir_data ../../data/sevir --sevir_catalog ../../data/CATALOG.csv --output_location ../../data/interim/

Testing pretrained models

Pretrained models used in the paper are located under models/. To run test metrics on these datasets, run the test_*.py scripts and point to the pretrained model, and the test dataset. To test, we recommend setting num_test to a small number, and increasing thereafter (not specifying will use all test data). This shows an example

# Test a trained synrad model
python test_synrad.py  --num_test 1000 --model models/synrad_mse.h5   --test_data data/interim/synrad_testing.h5  -output test_output.csv

Also check out the examples in notebooks/ for how to run pretrained models and visualize results.

Model training

This section describes how to train the nowcast and synthetic weather radar (synrad) models yourself. Models discussed in the paper were trained using distributed training over 8 NVIDIA Volta V100 GPUs with 32GB of memory. However the code in this repo is setup to train on a single GPU.

The training datasets are pretty large, and running on the full dataset requires a significant amount of RAM. We suggest that you first test the model with --num_train set to a low number to start, and increase this to the limits of your system. Training with all the data may require writing your own generator that batches the data so that it fits in memory.

Training nowcast

To train the nowcast model, make sure the nowcast_training.h5 file is created using the previous steps. Below we set num_train to be only 1024, but this should be increased for better results. Results described in the paper were generated with num_train = 44,760. When training the model with the mse loss, the largest batch size possible is 32 and for all other cases, a maximum batch size of 4 must be used. Larger batch sizes will result in out-of-memory errors on the GPU. There are four choices of loss functions configured:

MSE Loss:

python train_nowcast.py   --num_train 1024  --nepochs 25  --batch_size 32 --loss_fn  mse  --logdir logs/mse_`date +yymmddHHMMSS`

Style and Content Loss:

python train_nowcast.py   --num_train 1024  --nepochs 25  --batch_size 4 --loss_fn  vgg  --logdir logs/mse_`date +yymmddHHMMSS`

MSE + Style and Content Loss:

python train_nowcast.py   --num_train 1024  --nepochs 25  --batch_size 4 --loss_fn  mse+vgg  --logdir logs/mse_`date +yymmddHHMMSS`

Conditional GAN Loss:

python train_nowcast.py   --num_train 1024  --nepochs 25  --batch_size 32 --loss_fn  cgan  --logdir logs/mse_`date +yymmddHHMMSS`

Each of these will write several files into the date-stamped directory in logs/, including tracking of metrics, and a model saved after each epoch. Run python train_nowcast.py -h for additional input parameters that can be specified.

Training synrad

To train synrad, make sure the synrad_training.h5 file is created using the previous step above. Below we set num_train to be only 10,000, but this should be increased for better results. There are three choices of loss functions configured:

MSE Loss:

python train_synrad.py   --num_train 10000  --nepochs 100  --loss_fn  mse  --loss_weights 1.0  --logdir logs/mse_`date +yymmddHHMMSS`

MSE+Content Loss:

python train_synrad.py   --num_train 10000  --nepochs 100  --loss_fn  mse+vgg  --loss_weights 1.0 1.0 --logdir logs/mse_vgg_`date +yymmddHHMMSS`

cGAN + MAE Loss:

python train_synrad.py   --num_train 10000  --nepochs 100  --loss_fn  gan+mae  --loss_weights 1.0 --logdir logs/gan_mae_`date +yymmddHHMMSS`

Each of these will write several files into the date-stamped directory in logs/, including tracking of metrics, and a model saved after each epoch.

Analyzing results

The notebooks under notebooks contain code for anaylzing the results of training, and for visualizing the results on sample test cases.

Owner
USAF - MIT Artificial Intelligence Accelerator
The official GitHub of the USAF/MIT AI Accelerator
USAF - MIT Artificial Intelligence Accelerator
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022