code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Overview

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling

This repository contains our PyTorch training code, evaluation code and pretrained models for AttentiveNAS.

[Update 06/21] Recenty, we have improved AttentiveNAS using an adaptive knowledge distillation training strategy, see our AlphaNet repo for more details of this work. AlphaNet has been accepted by ICML'21.

[Update 07/21] We provide an example code for searching the best models of FLOPs vs. accuracy trade-offs at here.

For more details, please see AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling by Dilin Wang, Meng Li, Chengyue Gong and Vikas Chandra.

If you find this repo useful in your research, please consider citing our work:

@article{wang2020attentivenas,
  title={AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling},
  author={Wang, Dilin and Li, Meng and Gong, Chengyue and Chandra, Vikas},
  journal={arXiv preprint arXiv:2011.09011},
  year={2020}
}

Evaluation

To reproduce our results:

  • Please first download our pretrained AttentiveNAS models from a Google Drive path and put the pretrained models under your local folder ./attentive_nas_data

  • To evaluate our pre-trained AttentiveNAS models, from AttentiveNAS-A0 to A6, on ImageNet with a single GPU, please run:

    python test_attentive_nas.py --config-file ./configs/eval_attentive_nas_models.yml --model a[0-6]

    Expected results:

    Name MFLOPs Top-1 (%)
    AttentiveNAS-A0 203 77.3
    AttentiveNAS-A1 279 78.4
    AttentiveNAS-A2 317 78.8
    AttentiveNAS-A3 357 79.1
    AttentiveNAS-A4 444 79.8
    AttentiveNAS-A5 491 80.1
    AttentiveNAS-A6 709 80.7

Training

To train our AttentiveNAS models from scratch, please run

python train_attentive_nas.py --config-file configs/train_attentive_nas_models.yml --machine-rank ${machine_rank} --num-machines ${num_machines} --dist-url ${dist_url}

We adopt SGD training on 64 GPUs. The mini-batch size is 32 per GPU; all training hyper-parameters are specified in train_attentive_nas_models.yml.

Additional data

  • A (sub-network config, FLOPs) lookup table could be used for constructing the architecture distribution under FLOPs-constraints.
  • A accuracy predictor trained via scikit-learn, which takes a subnetwork configuration as input, and outputs its predicted accuracy on ImageNet.
    • Convert a subnetwork configuration to our accuracy predictor compatibale inputs:
        res = [cfg['resolution']]
        for k in ['width', 'depth', 'kernel_size', 'expand_ratio']:
            res += cfg[k]
        input = np.asarray(res).reshape((1, -1))
    

License

The majority of AttentiveNAS is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Once For All is licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING and CODE_OF_CONDUCT for more info.

Owner
Facebook Research
Facebook Research
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021