TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

Related tags

Deep LearningTAUFE
Overview

TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

Publication
Park, D., Song, H., Kim, M., and Lee, J., "Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data," In Proceedings of the 35th NeurIPS, December 2021, Virtual. [Paper]

Citation

@article{park2021task,
  title={Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data},
  author={Park, Dongmin and Song, Hwanjun and Kim, MinSeok and Lee, Jae-Gil},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

1. Overview

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, which are not essential for solving the target task and are even imperceptible to a human, thereby resulting in poor generalization. Leveraging plenty of undesirable features in out-of-distribution (OOD) examples has emerged as a potential solution for de-biasing such features, and a recent study shows that softmax-level calibration of OOD examples can successfully remove the contribution of undesirable features to the last fully-connected layer of a classifier. However, its applicability is confined to the classification task, and its impact on a DNN feature extractor is not properly investigated. In this paper, we propose Taufe, a novel regularizer that deactivates many undesirable features using OOD examples in the feature extraction layer and thus removes the dependency on the task-specific softmax layer. To show the task-agnostic nature of Taufe, we rigorously validate its performance on three tasks, classification, regression, and a mix of them, on CIFAR-10, CIFAR-100, ImageNet, CUB200, and CAR datasets. The results demonstrate that Taufe consistently outperforms the state-of-the-art method as well as the baselines without regularization.

2. How to run

1. Image classification task

  • go to the folder 'code/classification/', and run STANDARD.py or TAUFE.py with arguments:
--in-data-name: the name of a target in-distribution dataset (string) # cifar10, cifar100, imgnet10
--ood-data-name: the name of an out-of-distribution dataset (string) # lsun, 80mTiny, svhn, imgnet990, places365
--n-samples: the number of training samples for few-shot learning (integer)
--n-class: the number of classes (int)
--taufe-weight: hyper-paramter lambda for taufe loss (float) # default:0.1

2. Semi-supervised learning task

  • go to the folder 'code/SSL/', and run MixMatch.py with arguments:
--in-data-name: the name of a target in-distribution dataset (string) # cifar10, cifar100
--ood-data-name: the name of an out-of-distribution dataset (string) # lsun, 80mTiny, svhn
--n-labeled: the number of labeled samples (integer)
--train-iteration: the number of training iterations (int)
--taufe-weight: hyper-paramter lambda for taufe loss (float) # default:0.1

3. Bounding-box regression task

  • go to the folder 'code/regression/', and run bbox_Standard.py or bbox_TAUFE.py with arguments:
--in-data-name: the name of a target in-distribution dataset (string) # cub200, car
--ood-data-name: the name of an out-of-distribution dataset (string) # imgnet, places365
--loss-type: the name of loss type (string) # L1, L1-IoU, D-IoU
--n-class: the number of classes (int)
--n-shots: the number of samples per class (int)
--taufe-weight: hyper-paramter lambda for taufe loss (float) # default:0.1

3. Requirement

  • Python 3
  • torch >= 1.3.0
Owner
KAIST Data Mining Lab
KAIST Data Mining Lab
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022