IOT: Instance-wise Layer Reordering for Transformer Structures

Related tags

Deep LearningIOT
Overview

Introduction

This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wise Layer Reordering for Transformer Structures.

If you find this work helpful in your research, please cite as:

@inproceedings{
zhu2021iot,
title={{\{}IOT{\}}: Instance-wise Layer Reordering for Transformer Structures},
author={Jinhua Zhu and Lijun Wu and Yingce Xia and Shufang Xie and Tao Qin and Wengang Zhou and Houqiang Li and Tie-Yan Liu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=ipUPfYxWZvM}
}

Requirements and Installation

  • PyTorch version == 1.0.0
  • Python version >= 3.5

To install IOT:

git clone https://github.com/instance-wise-ordered-transformer/IOT
cd IOT
pip install --editable .

Getting Started

Take IWSLT14 De-En translation as an example.

Data Preprocessing

cd examples/translation/
bash prepare-iwslt14.sh
cd ../..

TEXT=examples/translation/iwslt14.tokenized.de-en
python preprocess.py --source-lang de --target-lang en \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir data-bin/iwslt14.tokenized.de-en --joined-dictionary

Training

Encoder order is set to be the default one without reordering (ENCODER_MAX_ORDER=1), since the paper finds that both reordering encoder and decoder is not good as reordering decoder only.

#!/bin/bash
export CUDA_VISIBLE_DEVICES=${1:-0}
nvidia-smi

ENCODER_MAX_ORDER=1
DECODER_MAX_ORDER=3
DECODER_ORDER="0 3 5"
DIVERSITY=0.1
GS_MAX=20
GS_MIN=2
GS_R=0
GS_UF=5000
KL=0.01
CLAMPVAL=0.05

DECODER_ORDER_NAME=`echo $DECODER_ORDER | sed 's/ //g'`
SAVE_DIR=checkpoints/dec_${DECODER_MAX_ORDER}_order_${DECODER_ORDER_NAME}_div_${DIVERSITY}_gsmax_${GS_MAX}_gsmin_${GS_MIN}_gsr_${GS_R}_gsuf_${GS_UF}_kl_${KL}_clampval_${CLAMPVAL}
mkdir -p ${SAVE_DIR}

python -u train.py data-bin/iwslt14.tokenized.de-en -a transformer_iwslt_de_en \
--optimizer adam --lr 0.0005 -s de -t en --label-smoothing 0.1 --dropout 0.3 --max-tokens 4000 \
--min-lr 1e-09 --lr-scheduler inverse_sqrt --weight-decay 0.0001 --criterion label_smoothed_cross_entropy \
--max-update 100000 --warmup-updates 4000 --warmup-init-lr 1e-07 --adam-betas '(0.9,0.98)' \
--save-dir $SAVE_DIR --share-all-embeddings  --gs-clamp --decoder-orders $DECODER_ORDER  \
--encoder-max-order $ENCODER_MAX_ORDER  --decoder-max-order $DECODER_MAX_ORDER  --diversity $DIVERSITY \
--gumbel-softmax-max $GS_MAX  --gumbel-softmax-min $GS_MIN --gumbel-softmax-tau-r $GS_R  --gumbel-softmax-update-freq $GS_UF \
--kl $KL --clamp-value $CLAMPVAL | tee -a ${SAVE_DIR}/train.log

Evaluation

#!/bin/bash
set -x
set -e

pip install -e . --user
export CUDA_VISIBLE_DEVICES=${1:-0}
nvidia-smi

ENCODER_MAX_ORDER=1
DECODER_MAX_ORDER=3
DECODER_ORDER="0 3 5"
DIVERSITY=0.1
GS_MAX=20
GS_MIN=2
GS_R=0
GS_UF=5000
KL=0.01
CLAMPVAL=0.05

DECODER_ORDER_NAME=`echo $DECODER_ORDER | sed 's/ //g'`
SAVE_DIR=checkpoints/dec_${DECODER_MAX_ORDER}_order_${DECODER_ORDER_NAME}_div_${DIVERSITY}_gsmax_${GS_MAX}_gsmin_${GS_MIN}_gsr_${GS_R}_gsuf_${GS_UF}_kl_${KL}_clampval_${CLAMPVAL}

python generate.py data-bin/iwslt14.tokenized.de-en \
  --path $SAVE_DIR/checkpint_best.pt \
  --batch-size 128 --beam 5 --remove-bpe --quiet --num-ckts $DECODER_MAX_ORDER 
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
22 Oct 14, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022