The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

Related tags

Deep LearningPISE
Overview

PISE

The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

Requirement

conda create -n pise python=3.6
conda install pytorch=1.2 cudatoolkit=10.0 torchvision
pip install scikit-image pillow pandas tqdm dominate natsort 

Data

Data preparation for images and keypoints can follow Pose Transfer and GFLA.

  1. Download deep fashion dataset. You will need to ask a password from dataset maintainers. Unzip 'Img/img.zip' and put the folder named 'img' in the './fashion_data' directory.

  2. Download train/test key points annotations and the dataset list from Google Drive, including fashion-pairs-train.csv, fashion-pairs-test.csv, fashion-annotation-train.csv, fashion-annotation-train.csv, train.lst, test.lst. Put these files under the ./fashion_data directory.

  3. Run the following code to split the train/test dataset.

    python data/generate_fashion_datasets.py
    
  4. Download parsing data, and put these files under the ./fashion_data directory. Parsing data for testing can be found from baidu (fectch code: abcd) or Google drive. Parsing data for training can be found from baidu (fectch code: abcd) or Google drive. You can get the data follow with PGN, and re-organize the labels as you need.

Train

python train.py --name=fashion --model=painet --gpu_ids=0

Note that if you want to train a pose transfer model as well as texture transfer and region editing, just comments the line 177 and 178, and uncomments line 162-176.

For training using multi-gpus, you can refer to issue in GFLA

Test

You can directly download our test results from baidu (fetch code: abcd) or Google drive.
Pre-trained checkpoint of human pose transfer reported in our paper can be found from baidu (fetch code: abcd) or Google drive and put it in the folder (-->results-->fashion).

Pre-Trained checkpoint of texture transfe, region editing, style interpolation used in our paper can be found from baidu(fetch code: abcd) or Google drive. Note that the model need to be changed.

Test by yourself

python test.py --name=fashion --model=painet --gpu_ids=0 

Citation

If you use this code, please cite our paper.

@InProceedings{Zhang_2021_CVPR,
    author    = {Zhang, Jinsong and Li, Kun and Lai, Yu-Kun and Yang, Jingyu},
    title     = {{PISE}: Person Image Synthesis and Editing With Decoupled GAN},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7982-7990}
}

Acknowledgments

Our code is based on GFLA.

Owner
jinszhang
jinszhang
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022