Create time-series datacubes for supervised machine learning with ICEYE SAR images.

Related tags

Deep Learningicecube
Overview

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates multidimensional SAR image and labeled data arrays.

The datacubes stack SAR time-series images in range and azimuth and can preserve the geospatial content, intensity, and complex SAR signal from the ICEYE SAR images. You can use the datacubes with ICEYE Ground Range Detected (GRD) geotifs and ICEYE Single Look Complex (SLC) .hdf5 product formats.

alt text

This work is sponsored by ESA Φ-lab as part of the AI4SAR initiative.


Getting Started

You need Python 3.8 or later to use the ICEcube library.

The installation options depend on whether you want to use the library in your Python scripts or you want to contribute to it. For more information, see Installation.


ICEcube Examples

To test the Jupyter notebooks and for information on how to use the library, see the ICEcube Documentation.


AI4SAR Project Updates

For the latest project updates, see SAR for AI Development.

Comments
  • 'RPC' does not exist

    'RPC' does not exist

    Trying to read an SLC .h5 downloaded from ICEYE archive (id 10499) and get 'RPC does not exist':

    cube_config = CubeConfig()
    slc_datacube = SLCDatacube.build(cube_config, '/Users/sstrong/bin/test_data_icecube/slcs')
    
    ---------------------------------------------------------------------------
    KeyError                                  Traceback (most recent call last)
    /var/folders/7r/fyfh8zx51ls6yt8t_jppnz3c0000gq/T/ipykernel_11546/2087236712.py in <module>
          1 cube_config = CubeConfig()
    ----> 2 slc_datacube = SLCDatacube.build(cube_config, '/Users/sstrong/bin/test_data_icecube/slcs')
    
    ~/Documents/github/icecube/icecube/bin/sar_cube/slc_datacube.py in build(cls, cube_config, raster_dir)
         52     def build(cls, cube_config: CubeConfig, raster_dir: str) -> SARDatacube:
         53         slc_datacube = SLCDatacube(cube_config, RASTER_DTYPE)
    ---> 54         ds = slc_datacube.create(cls.PRODUCT_TYPE, raster_dir)
         55         slc_datacube.xrdataset = ds
         56         return slc_datacube
    
    ~/Documents/github/icecube/icecube/utils/common_utils.py in time_it(*args, **kwargs)
        111     def time_it(*args, **kwargs):
        112         time_started = time.time()
    --> 113         return_value = func(*args, **kwargs)
        114         time_elapsed = time.time()
        115         logger.info(
    
    ~/Documents/github/icecube/icecube/bin/sar_cube/sar_datacube.py in create(self, product_type, raster_dir)
         43         """
         44         metadata_object = SARDatacubeMetadata(self.cube_config)
    ---> 45         metadata_object = metadata_object.compute_metdatadf_from_folder(
         46             raster_dir, product_type
         47         )
    
    ~/Documents/github/icecube/icecube/bin/sar_cube/sar_datacube_metadata.py in compute_metdatadf_from_folder(self, raster_dir, product_type)
        116         )
        117 
    --> 118         self.metadata_df = self._crawl_metadata(raster_dir, product_type)
        119         logger.debug(f"length metadata from the directory {len(self.metadata_df)}")
        120 
    
    ~/Documents/github/icecube/icecube/bin/sar_cube/sar_datacube_metadata.py in _crawl_metadata(self, raster_dir, product_type)
         68 
         69     def _crawl_metadata(self, raster_dir, product_type):
    ---> 70         return metadata_crawler(
         71             raster_dir,
         72             product_type,
    
    ~/Documents/github/icecube/icecube/utils/metadata_crawler.py in metadata_crawler(raster_dir, product_type, variables, recursive)
         36     _, raster_paths = DirUtils.get_dir_files(raster_dir, fext=fext)
         37 
    ---> 38     return metadata_crawler_list(raster_paths, variables)
         39 
         40 
    
    ~/Documents/github/icecube/icecube/utils/metadata_crawler.py in metadata_crawler_list(raster_paths, variables)
         43 
         44     for indx, raster_path in enumerate(raster_paths):
    ---> 45         metadata = IO.load_ICEYE_metadata(raster_path)
         46         parsed_metadata = _parse_data_row(metadata, variables)
         47         parsed_metadata["product_fpath"] = raster_path
    
    ~/Documents/github/icecube/icecube/utils/analytics_IO.py in load_ICEYE_metadata(path)
        432         are converted from bytedata and read into the dict for compatability reasons.
        433         """
    --> 434         return read_SLC_metadata(h5py.File(path, "r"))
        435 
        436     elif path.endswith(".tif") or path.endswith(".tiff"):
    
    ~/Documents/github/icecube/icecube/utils/analytics_IO.py in read_SLC_metadata(h5_io)
        329 
        330     # RPCs are nested under "RPC/" in the h5 thus need to be parsed in a specific manner
    --> 331     RPC_source = h5_io["RPC"]
        332     meta_dict["RPC"] = parse_slc_rpc_to_meta_dict(
        333         RPC_source=RPC_source, meta_dict=meta_dict
    
    h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
    
    h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
    
    /opt/homebrew/anaconda3/envs/icecube_env/lib/python3.8/site-packages/h5py/_hl/group.py in __getitem__(self, name)
        303                 raise ValueError("Invalid HDF5 object reference")
        304         elif isinstance(name, (bytes, str)):
    --> 305             oid = h5o.open(self.id, self._e(name), lapl=self._lapl)
        306         else:
        307             raise TypeError("Accessing a group is done with bytes or str, "
    
    h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
    
    h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
    
    h5py/h5o.pyx in h5py.h5o.open()
    
    KeyError: "Unable to open object (object 'RPC' doesn't exist)"
    
    opened by shaystrong 3
  • scikit-image dependency  fails on OSX M1 chip

    scikit-image dependency fails on OSX M1 chip

    Can't install all requirements for icecube on an M1 chip. This may present a future problem, just documenting for awareness. scikit-image cannot seem to be compiled/installed/etc on the M1. I have not tested the conda installation, as perhaps that does work. But i use brew/pip (and conda can create conflicts with those)

    opened by shaystrong 2
  • Fix/labels coords

    Fix/labels coords

    Summary includes:

    • Making xr.dataset structure coherent for labels and SAR (added time coords for labels)
    • For labels datacube, product_fpath are used compared to previously
    • small typo fixed
    • tests added for merging sar cubes with labels cube
    • instructions/cell added to install ml requirements for notebook#5
    • release notes added to mkdocs
    • steup.py updated with ml requirements and version
    opened by muaali 1
  • Update/docs/notebooks

    Update/docs/notebooks

    Changes involve:

    • Introduced a new markdown file called "overview.md" that talks about the structure of examples under docs/
    • Added a new notebook : CreatingDatacube that walks a user how to create datacubes with different methods
    • Other notebooks updated and improved.
    opened by muaali 1
  • missing RPC metadata set to None

    missing RPC metadata set to None

    related to issue: https://github.com/iceye-ltd/icecube/issues/11 Some of old ICEYE images can have RPC information missing. If that happens RPC key will be missing and pipeline does not work. RPC is now set to None if it's missing with a user warning generated.

    opened by muaali 0
  • feat/general metadata

    feat/general metadata

    Following changes introduced:

    • metadata constraints loosen up to allow merging general SAR data (rasterio/HDF5 compatible). But this means that cube configuration is not available for such rasters
    • .tiff support added for GRDs
    • code refactoring in SARDatacubeMetadata to avoid repetitive code
    opened by muaali 0
  • Labels/subset support

    Labels/subset support

    Changes include:

    • Updating SLC metadata reader to avoid key values stored as HDF5 dataset
    • Enabling cube generation from labels.json that have masks/labels for subset rasters (i.e., number of masks ingested into labels cube don't necessarily have to be same as number of rasters)
    • CHUNK_SIZE have been reduced to provide more optimized performance for creating massive datacubes
    opened by muaali 0
  • bin module not found

    bin module not found

    After installing from github using !pip install git+https://github.com/iceye-ltd/icecube.git it imports well icecube, but it throws this error for module bin ModuleNotFoundError: No module named 'icecube.bin'

    Any advice, thanks

    opened by jaimebayes 0
  • dummy_mask_labels.json

    dummy_mask_labels.json

    FileNotFoundError: [Errno 2] No such file or directory: './resources/labels/dummy_mask_labels.json'

    Could you upload it? is it available? Thanks in advance,

    opened by jaimebayes 0
Releases(1.1.0)
Owner
ICEYE Ltd
ICEYE Ltd
ICEYE Ltd
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022