DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

Related tags

Deep LearningDRLib
Overview

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos

A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos. With tensorflow1.14 and pytorch, add HER and PER, core codes based on https://github.com/openai/spinningup

Compared with spinning up, I delete multi-process and experimental grid wrapper, and our advantage is that it is convenient to debug with pycharm~

项目特点:

  1. tf1和pytorch两个版本的算法,前者快,后者新,任君选择;

  2. 在spinup的基础上,封装了DDPG, TD3, SAC等主流强化算法,相比原来的函数形式的封装,调用更方便,且加了pytorch的GPU调用

  3. 添加了HER和PER功能,非常适合做机器人相关任务的同学们;

  4. 去除了自动调参(ExperimentGrid)和多进程(MPI_fork)部分,适合新手在pycharm中debug,前者直接跑经常会报错~ 等我熟练了这两个,我再加上去,并附上详细教程;

  5. 最后,全网最详细的环境配置教程!亲测两个小时内,从零配置完全套环境!

  6. 求三连,不行求个star!

1. Installation

  1. Clone the repo and cd into it:

    git clone https://github.com/kaixindelele/DRLib.git
    cd DRLib
  2. Create anaconda DRLib_env env:

    conda create -n DRLib_env python=3.6.9
    source activate DRLib_env
  3. Install pip_requirement.txt:

    pip install -r pip_requirement.txt

    If installation of mpi4py fails, try the following command(Only this one can be installed successfully!):

    conda install mpi4py
  4. Install tensorflow-gpu=1.14.0

    conda install tensorflow-gpu==1.14.0 # if you have a CUDA-compatible gpu and proper drivers
  5. Install torch torchvision

    # CUDA 9.2
    conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2 -c pytorch
    
    # CUDA 10.1
    conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
    
    # CUDA 10.2
    conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
    
    # CPU Only
    conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly -c pytorch
    
    # or pip install    
    pip --default-timeout=100 install torch -i  http://pypi.douban.com/simple  --trusted-host pypi.douban.com
    [pip install torch 在线安装!非离线!](https://blog.csdn.net/hehedadaq/article/details/111480313)
  6. Install mujoco and mujoco-py

    refer to: https://blog.csdn.net/hehedadaq/article/details/109012048
  7. Install gym[all]

    refer to https://blog.csdn.net/hehedadaq/article/details/110423154

2. Training models

  • Example 1. SAC-tf1-HER-PER with FetchPush-v1:
  1. modify params in arguments.py, choose env, RL-algorithm, use PER and HER or not, gpu-id, and so on.
  2. run with train_tf.py or train_torch.py
    python train_tf.py
  3. exp results to local:https://blog.csdn.net/hehedadaq/article/details/114045615
  4. plot results:https://blog.csdn.net/hehedadaq/article/details/114044217

3. File tree and introduction:

.
├── algos
│   ├── pytorch
│   │   ├── ddpg_sp
│   │   │   ├── core.py-------------It's copied directly from spinup, and modified some details.
│   │   │   ├── ddpg_per_her.py-----inherits from offPolicy.baseOffPolicy, can choose whether or not HER and PER
│   │   │   ├── ddpg.py-------------It's copied directly from spinup
│   │   │   ├── __init__.py
│   │   ├── __init__.py
│   │   ├── offPolicy
│   │   │   ├── baseOffPolicy.py----baseOffPolicy, can be used to DDPG/TD3/SAC and so on.
│   │   │   ├── norm.py-------------state normalizer, update mean/std with training process.
│   │   ├── sac_auto
│   │   ├── sac_sp
│   │   │   ├── core.py-------------likely as before.
│   │   │   ├── __init__.py
│   │   │   ├── sac_per_her.py
│   │   │   └── sac.py
│   │   └── td3_sp
│   │       ├── core.py
│   │       ├── __init__.py
│   │       ├── td3_gpu_class.py----td3_class modified from spinup
│   │       └── td3_per_her.py
│   └── tf1
│       ├── ddpg_sp
│       │   ├── core.py
│       │   ├── DDPG_class.py------------It's copied directly from spinup, and wrap algorithm from function to class.
│       │   ├── DDPG_per_class.py--------Add PER.
│       │   ├── DDPG_per_her_class.py----DDPG with HER and PER without inheriting from offPolicy.
│       │   ├── DDPG_per_her.py----------Add HER and PER.
│       │   ├── DDPG_sp.py---------------It's copied directly from spinup, and modified some details.
│       │   ├── __init__.py
│       ├── __init__.py
│       ├── offPolicy
│       │   ├── baseOffPolicy.py
│       │   ├── core.py
│       │   ├── norm.py
│       ├── sac_auto--------------------SAC with auto adjust alpha parameter version.
│       │   ├── core.py
│       │   ├── __init__.py
│       │   ├── sac_auto_class.py
│       │   ├── sac_auto_per_class.py
│       │   └── sac_auto_per_her.py
│       ├── sac_sp--------------------SAC with alpha=0.2 version.
│       │   ├── core.py
│       │   ├── __init__.py
│       │   ├── SAC_class.py
│       │   ├── SAC_per_class.py
│       │   ├── SAC_per_her.py
│       │   ├── SAC_sp.py
│       └── td3_sp
│           ├── core.py
│           ├── __init__.py
│           ├── TD3_class.py
│           ├── TD3_per_class.py
│           ├── TD3_per_her_class.py
│           ├── TD3_per_her.py
│           ├── TD3_sp.py
├── arguments.py-----------------------hyperparams scripts
├── drlib_tree.txt
├── HER_DRLib_exps---------------------demo exp logs
│   ├── 2021-02-21_HER_TD3_FetchPush-v1
│   │   ├── 2021-02-21_18-26-08-HER_TD3_FetchPush-v1_s123
│   │   │   ├── checkpoint
│   │   │   ├── config.json
│   │   │   ├── params.data-00000-of-00001
│   │   │   ├── params.index
│   │   │   ├── progress.txt
│   │   │   └── Script_backup.py
├── memory
│   ├── __init__.py
│   ├── per_memory.py--------------mofan version
│   ├── simple_memory.py-----------mofan version
│   ├── sp_memory.py---------------spinningup tf1 version, simple uniform buffer memory class.
│   ├── sp_memory_torch.py---------spinningup torch-gpu version, simple uniform buffer memory class.
│   ├── sp_per_memory.py-----------spinningup tf1 version, PER buffer memory class.
│   └── sp_per_memory_torch.py
├── pip_requirement.txt------------pip install requirement, exclude mujoco-py,gym,tf,torch.
├── spinup_utils-------------------some utils from spinningup, about ploting results, logging, and so on.
│   ├── delete_no_checkpoint.py----delete the folder where the experiment did not complete.
│   ├── __init__.py
│   ├── logx.py
│   ├── mpi_tf.py
│   ├── mpi_tools.py
│   ├── plot.py
│   ├── print_logger.py------------save the information printed by the terminal to the local log file。
│   ├── run_utils.py---------------now I haven't used it. I have to learn how to multi-process.
│   ├── serialization_utils.py
│   └── user_config.py
├── train_tf1.py--------------main.py for tf1
└── train_torch.py------------main.py for torch

4. HER introduction:

Refer to these code bases:

  1. It can be converged, but this code is too difficult. https://github.com/openai/baselines

  2. It can also converged, but only for DDPG-torch-cpu. https://github.com/sush1996/DDPG_Fetch

  3. It can not be converged, but this code is simpler. https://github.com/Stable-Baselines-Team/stable-baselines

4.1. My understanding and video:

种瓜得豆来解释her: 第一步在春天(state),种瓜(origin-goal)得豆,通过HER,把目标换成种豆,按照之前的操作,可以学会在春天种豆得豆; 第二步种米得瓜,学会种瓜得瓜; 即只要是智能体中间经历过的状态,都可以当做它的目标,进行学会。 即如果智能体能遍历所有的状态空间,那么它就可以学会达到整个状态空间。

https://www.bilibili.com/video/BV1BA411x7Wm

4.2. Key tricks for HER:

  1. state-normalize: success rate from 0 to 1 for FetchPush-v1 task.
  2. Q-clip: success rate from 0.5 to 0.7 for FetchPickAndPlace-v1 task.
  3. action_l2: little effect for Push task.

4.3. Performance about HER-DDPG with FetchPush-v1:

5. PER introduction:

refer to:off-policy全系列(DDPG-TD3-SAC-SAC-auto)+优先经验回放PER-代码-实验结果分析

6. Summary:

这个库我封装了好久,整个代码库简洁、方便、功能比较齐全,在环境配置这块几乎是手把手教程,希望能给大家节省一些时间~

从零开始配置,不到两小时,从下载代码库,到配置环境,到在自己的环境中跑通,全流程非常流畅。

6.1. 下一步添加的功能:

  1. PPO的封装;

  2. DQN的封装;

  3. 多进程的封装;

  4. ExperimentGrid的封装;

7. Contact:

深度强化学习-DRL:799378128

欢迎关注知乎帐号:未入门的炼丹学徒

CSDN帐号:https://blog.csdn.net/hehedadaq

An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022