Config files for my GitHub profile.

Overview

Canalyst Candas Data Science Library

Name

Canalyst Candas

Description

Built by a former PM / analyst to give anyone with a little bit of Python knowledge the ability to scale their investment process. Access, manipulate, and visualize Canalyst models, without opening Excel. Work with full fundamental models, create and calculate scenarios, and visualize actionable investment ideas.

Hosted collaborative Jupyterhub server available at Candas Cloud

  • Rather than simply deliver data, Candas serves the actual model in a Python class. Like a calculator, this allows for custom scenario evaluation for one or more companies at a time.
  • Use Candas to search for KPIs by partial or full description, filter by “key driver” – model driver, sector, category, or query against values for a screener-like functionality. Search either our full model dataset or our guidance dataset for companies which provide guidance.
  • Discover the KPIs with the greatest impact on stock price, and evaluate those KPIs based on changing P&L scenarios.
  • Visualize P&L statements in node trees with common size % and values attached. Use the built-in charting tools to efficiently make comparisons.

In short, a data science library using Canalyst's API, developed for securities analysis using Python.

  • Search KPI
  • Company data Dataframes (one company or many)
  • Charts
  • Model update (scenario analysis)
  • Visualize formula builds

Installation

Installation instructions can be found on our PyPI page

Usage

Search Guidance:

Candas is built to facilitate easy discovery of guidance in our Modelverse. You can search guidance for key items, either filtered by a ticker / ticker list or just across the entire Modelverse.

Guidance Example:

canalyst_search.search_guidance_time_series(ticker = "", #any ticker or list of tickers 
                sector="Consumer", #path in our nomenclature is a hierarchy of sectors
                file_name="", #file name is a proxy for company name
                time_series_name="", #our range name
                time_series_description="china", #human readable row header
                most_recent=True) #most recent item or all items 

Search KPI:

Candas is also built to facilitate easy discovery of KPI names in our Modelverse.

KPI Search Example:

canalyst_search.search_time_series(ticker = "",
                 sector="Thrifts",
                 category="",
                 unit_type="percentage",
                 mo_only=True,
                 period_duration_type='fiscal_quarter',
                 time_series_name='',
                 time_series_description='total revenue growth', #guessing on the time series name
                 query = 'value > 5')

ModelSet:

The core objects in Candas are Models. Models can be arranged in a set by instantiating a ModelFrame. Instantiate a config object to handle authentication.

model_set = cd.ModelSet(ticker_list=[ticker_list],config=config)

With modelset, the model_frame attribute returns Pandas dataframes. The parameters for model_frame():

  • time_series_name: Send in a partial string as time series name, model_frame will regex search for it
  • pivot: Pivot allows for excel-model style wide data (good for comp screens)
  • mrq: True / False filters to ONLY the most recent quarter
  • period_duration_type: is fiscal_quarter or fiscal_year or blank for both
  • is_historical: True will filter to only historical, False only forecasts, or blank for both
  • n_periods: defaults to 12 but most of our models go back to 2013
  • mrq_notation: applies to pivot, and will filter to historical data and apply MRQ-n notation on the columns (a way to handle off fiscal reporters in comp screens)

Example:

model_set.model_frame(time_series_name="MO_RIS_REV",
                  is_driver="",
                  pivot=False,
                  mrq=False,
                  period_duration_type='fiscal_quarter', #or fiscal_year
                  is_historical="",
                  n_periods=12,
                  mrq_notation=False)
`

Charting:

Candas has a Canalyst standard charting library which allows for easy visualizations.

Chart Example: Chart

df_plot = df[df['ticker'].isin(['AZUL US','MESA US'])][['ticker','period_name','value']].pivot_table(values="value", index=["period_name"],columns=["ticker"]).reset_index()
p = cd.Chart(df_plot['period_name'],df_plot[["AZUL US", "MESA US"]],["AZUL US", "MESA US"], [["Periods", "Actual"]], title="MO_MA_Fuel")
p.show()

Scenario Analysis:

Candas can arrange a forecast and send it to our scenario engine via the fit() function, and get changed outputs vs the default.

Example:

return_series = "MO_RIS_EPS_WAD_Adj"
list_output = []
for ts in time_series_names:
    df_params = model_set.forecast_frame(ts,
                             n_periods=-1,
                             function_name='multiply',
                             function_value=(1.1))
    dicts_output=model_set.fit(df_params,return_series)
    for key in dicts_output.keys():
        list_output.append(dicts_output[key].head(1))

ModelMap:

Candas can show a node tree at any level of the PNL

Example:

model_set.create_model_map(ticker=ticker,time_series_name="MO_RIS_REV",col_for_labels = "time_series_description").show() #launches in a separate browser window

ModelMap and Scenario Engine Together: ModelMap example: Node Chart for Fuel Margin Fuel Margin

KPI Importance / Scenario Engine:

Use the same node tree to extract key drivers, then use our scenario engine to rank order 1% changes in KPI driver vs subsequent revenue change

Example:

#use the same node tree to extract key drivers (red nodes in the map)
df = model_set.models[ticker].key_driver_map("MO_RIS_REV")
return_series = 'MO_RIS_REV'
driver_list_df = []
for i, row in df.iterrows():

    time_series_name = row['time_series_name']
    print(f"scenario: move {time_series_name} 1% and get resultant change in {return_series}")

    #create a param dataframe for each time series name in our list
    df_1_param = model_set.forecast_frame(time_series_name,
                         n_periods=-1,
                         function_name='multiply',
                         function_value=1.01)


    d_output=model_set.fit(df_1_param,return_series) #our fit function will return a link to scenario engine JSON for audit

    df_output = model_set.filter_summary(d_output,period_type='Q')

    df_merge = pd.merge(df_output,df_1_param,how='inner',left_on=['ticker','period_name'],right_on=['ticker','period_name'])

    driver_list_df.append(df_merge) #append to a list for concatenating at the end
df = pd.concat(driver_list_df).sort_values('diff',ascending=False)[['ticker','time_series_name_y','diff']]
df = df.rename(columns={'time_series_name_y':'time_series_name'})
df['diff'] = df['diff']-1
df = df.sort_values('diff')
df.plot(x='time_series_name',y='diff',kind='barh',title=ticker+" Key Drivers Revenue Sensitivity")

KPI Rank

Support

[email protected]

Contributing

Project is currently only open to contributors through discussion with the maintainer.

Authors and acknowledgment

[email protected]

License

APL 2.0

Project status

Ongoing

This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022