⚡ H2G-Net for Semantic Segmentation of Histopathological Images

Overview

H2G-Net

This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-resolution refinement approach for semantic segmentation of gigapixel histopathological images".

We propose a cascaded convolutional neural network for semantic segmentation of breast cancer tumours from whole slide images (WSIs). It is a two-stage design. In the first stage (detection stage), we apply a patch-wise classifier across the image which produces a tumour probability heatmap. In the second stage (refinement stage), we merge the resultant heatmap with a low-resolution version of the original WSI, before we send it to a new convolutional autoencoder that produces a final segmentation of the tumour ROI.

NOTE: This repository is currently in construction! More to be added!!

Setup

Something...

Citation

Please, cite our paper if you find the work useful:

  @misc{pedersen2021hybrid,
  title={Hybrid guiding: A multi-resolution refinement approach for semantic segmentation of gigapixel histopathological images}, 
  author={André Pedersen and Erik Smistad and Tor V. Rise and Vibeke G. Dale and Henrik S. Pettersen and Tor-Arne S. Nordmo and David Bouget and Ingerid Reinertsen and Marit Valla},
  year={2021},
  eprint={2112.03455},
  archivePrefix={arXiv},
  primaryClass={eess.IV}}

Contact

Please, contact [email protected] for any further questions.

Acknowledgements

Code for the AGU-Net and DAGU-Net architectures were based on the publication:

  @misc{bouget2021meningioma,
  title={Meningioma segmentation in T1-weighted MRI leveraging global context and attention mechanisms},
  author={David Bouget and André Pedersen and Sayied Abdol Mohieb Hosainey and Ole Solheim and Ingerid Reinertsen},
  year={2021},
  eprint={2101.07715},
  archivePrefix={arXiv},
  primaryClass={eess.IV}}

Code for the DoubleU-Net architectures were based on the official GitHub repository, based on this publication:

  @INPROCEEDINGS{9183321,
  author={D. {Jha} and M. A. {Riegler} and D. {Johansen} and P. {Halvorsen} and H. D. {Johansen}},
  booktitle={2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)}, 
  title={DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation}, 
  year={2020},
  pages={558-564}}
Owner
André Pedersen
PhD Candidate in Medical Technology at NTNU | Master of Science at SINTEF Health Research
André Pedersen
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022