The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

Overview

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv

SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

Overview

Requirements

We recommend using anaconda or miniconda for python. Our code has been tested with python=3.8 on linux.

To create a new environment with conda

conda create -n saint_env python=3.8
conda activate saint_env

We recommend installing the latest pytorch, torchvision, einops, pandas, wget, sklearn packages.

You can install them using

conda install pytorch torchvision -c pytorch
conda install -c conda-forge einops 
conda install -c conda-forge pandas 
conda install -c conda-forge python-wget 
conda install -c anaconda scikit-learn 

Make sure the following requirements are met

  • torch>=1.8.1
  • torchvision>=0.9.1

Optional

We used wandb to update our logs. But it is optional.

conda install -c conda-forge wandb 

Training & Evaluation

In each of our experiments, we use a single Nvidia GeForce RTX 2080Ti GPU.

First download the processed datasets from this link into the folder ./data

To train the model(s) in the paper, run this command:

python train.py  --dataset <dataset_name> --attentiontype <attention_type> 

Pretraining is useful when there are few training data samples. Sample code looks like this

python train.py  --dataset <dataset_name> --attentiontype <attention_type> --pretrain --pt_tasks <pretraining_task_touse> --pt_aug <augmentations_on_data_touse> --ssl_avail_y <Number_of_labeled_samples>

Train all 16 datasets by running bash files. train.sh for supervised learning and train_pt.sh for pretraining and semi-supervised learning

bash train.sh
bash train_pt.sh

Arguments

  • --dataset : Dataset name. We support only the 16 datasets discussed in the paper. Supported datasets are ['1995_income','bank_marketing','qsar_bio','online_shoppers','blastchar','htru2','shrutime','spambase','philippine','mnist','arcene','volkert','creditcard','arrhythmia','forest','kdd99']
  • --embedding_size : Size of the feature embeddings
  • --transformer_depth : Depth of the model. Number of stages.
  • --attention_heads : Number of attention heads in each Attention layer.
  • --cont_embeddings : Style of embedding continuous data.
  • --attentiontype : Variant of SAINT. 'col' refers to SAINT-s variant, 'row' is SAINT-i, and 'colrow' refers to SAINT.
  • --pretrain : To enable pretraining
  • --pt_tasks : Losses we want to use for pretraining. Multiple arguments can be passed.
  • --pt_aug : Types of data augmentations used in pretraining. Multiple arguments are allowed. We support only mixup and CutMix right now.
  • --ssl_avail_y : Number of labeled samples used in semi-supervised experiments. Default is 0, which means all samples are labeled and is supervised case.
  • --pt_projhead_style : Projection head style used in contrastive pipeline.
  • --nce_temp : Temperature used in contrastive loss function.
  • --active_log : To update the logs onto wandb. This is optional

Evaluation

We choose the best model by evaluating the model on validation dataset. The AUROC(for binary classification datasets) and Accuracy (for multiclass classification datasets) of the best model on test datasets is printed after training is completed. If wandb is enabled, they are logged to 'test_auroc_bestep', 'test_accuracy_bestep' variables.

Acknowledgements

We would like to thank the following public repo from which we borrowed various utilites.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Cite us

@article{somepalli2021saint,
  title={SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training},
  author={Somepalli, Gowthami and Goldblum, Micah and Schwarzschild, Avi and Bruss, C Bayan and Goldstein, Tom},
  journal={arXiv preprint arXiv:2106.01342},
  year={2021}
}

Owner
Gowthami Somepalli
Gowthami Somepalli
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023