A map update dataset and benchmark

Related tags

Deep Learningmuno21
Overview

MUNO21

MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous datasets focus on road extraction, and measure how well a method can infer a road network from aerial or satellite imagery. In contrast, MUNO21 measures how well a method can modify the road network data in an existing digital map dataset to make it reflect the latest physical road network visible from imagery. This task is more practical, since it doesn't throw away the existing map, but also more challenging, as physical roads may be constructed, bulldozed, or otherwise modified.

For more details, see https://favyen.com/muno21/.

This repository contains the code that was used to create MUNO21, as well as code for working with the dataset and computing evaluation metrics.

Requirements

Compiler and application requirements include the following. The versions are what we use and older versions make work as well.

  • Go 1.16+ (with older versions, module-aware mode must be enabled)
  • Python 3.5
  • osmium-tool 2.16.0 (only needed for dataset pre-processing)
  • ImageMagick 6.8 (only needed for dataset pre-processing)

Python requirements are in requirements.txt, and can be installed with:

pip install -r requirements.txt

These requirements should be sufficient to run dataset pre-processing, automatic candidate generation and clustering, visualization, metric evaluation, and post-processing with removing G_extra and fusing new roads into the base map.

To run the included map update methods, a range of additional requirements are needed, depending on the particular method:

  • TensorFlow 1.15 (not 2.0)
  • pytorch 1.7
  • scipy 1.4
  • OpenCV
  • rdp

Dataset

Obtaining the Dataset

Download and extract the MUNO21 dataset:

wget https://favyen.com/files/muno21.zip
unzip muno21.zip

In the commands below, we may assume that you have placed the dataset in /data/:

mv mapupdate/ /data/

The dataset includes aerial image and road network data in large tiles around several cities, along with annotations that specify the map update scenarios. Some steps below will require road network data to be extracted in windows corresponding to the scenarios:

cd muno21/go/
mkdir /data/identity
export PYTHONPATH=../python/
python ../methods/identity/run.py /data/graphs/graphs/ /data/annotations.json /data/identity/

Data Format

Aerial imagery is available as JPEG images in the naip/jpg/ folder. These images are obtained from NAIP.

Road networks are available as .graph files in the graphs/graphs folder. See https://favyen.com/muno21/graph-format.txt for a description of the data format of these files. Note that, in contrast to some other datasets, road networks are NOT represented as images -- instead, they are undirected spatial networks, where vertices are labeled with (x,y) coordinates and edges correspond to road segments. The (x,y) coordinates indicate pixels in the corresponding JPEG image.

Note that two versions of the road network are available in this format.

  • {region_x_y_time}.graph: only includes public roads suitable for motor vehicles.
  • {region_x_y_time}_all.graph: includes most other "ways" that appear in OpenStreetMap.

The original OpenStreetMap data is available in the graphs/osm/ folder, in files encoded under the OSM PBF format. Methods may take advantage of the additional information in these files, such as various road attributes. To convert longitude-latitude coordinates to pixel coordinates, see go/lib/regions.go and go/preprocess/osm_to_graph.go.

Task

The MUNO21 dataset includes 1,294 map update scenarios. Each scenario specifies a pre-change timestamp, post-change timestamp, and a bounding box window where some change occurred.

The input is aerial imagery from each of four years, along with road network data from a specific pre-change year (usually 2012 or 2013).

The ground truth label is the road network from a specific post-change year (usually 2018 or 2019) inside the bounding box window.

During training, a method may use all aerial imagery and road network data from the training regions (see train.json). To facilitate self-supervised learning, methods may also use all aerial imagery in the test regions (see test.json), but only road network data from 2012 or 2013 in those regions.

During inference, for a given scenario, a method has access to the same data that is available during training. It additionally has access to road network data from all regions at the pre-change timestamp, although since this is usually 2012 or 2013, this usually does not actually provide any more data.

The method should output a road network corresponding to the physical roads visible in the aerial imagery at the post-change timestamp inside the bounding box window.

Metrics

Methods are compared in terms of their precision-recall curves.

Recall measures how much closer the output road networks are to the ground truth data (post-change road network) than the pre-change road networks. Two alternative ways of comparing road networks, PixelF1 and APLS, are used.

Precision measures how frequently a method makes incorrect modifications to the road network in scenarios where no change has occurred between the pre- and post-change timestamps.

A method may expose a single real-valued parameter that provides a tradeoff between precision and recall. For example, a method that infers road networks using image segmentation may expose the segmentation probability confidence threshold for the "road" class as a parameter -- increasing this threshold generally provides higher precision but lower recall. Methods are compared in terms of their precision-recall curves when varying this parameter.

Scenario Specification

Scenarios are specified in the annotations.json file. Let annotation refer to one annotation JSON object.

Each scenario specifies a spatial window in pixel coordinates where the map has changed: annotation['Cluster']['Window']. A method may use imagery and road network data outside that window, but its output road network should span that window plus 128-pixel padding; it will be evaluated only inside the window (with no padding), but the padding ensures that the evaluation metrics are computed correctly along the boundary of the window.

Currently, the pre-change timestamp is always 2013, and the post-change timestamp is always the year of the most recent aerial image (either 2018 or 2019).

Infer Road Networks

Refer to the documentation in methods/{classify,recurrentunet,road_connectivity,roadtracerpp,sat2graph}.

Each method besides classify is taken from a publicly available implementation (see README in each method directory.) We make minor changes to make them work with MUNO21. We also find many bugs in road_connectivity which we have to manually fix, and we adapt Sat2Graph to work with Python3. road_connectivity and recurrentunet will only work with Python 2.7.

Post-process Inferred Road Networks

Applying a method to infer road networks should yield a directory containing subdirectories (corresponding to different confidence thresholds) that each contain .graph files. Most methods require post-processing under our map fusion approach before evaluation.

Suppose that you have computed the outputs of MAiD in /data/maid/out/. Then, for each confidence threshold:

mkdir /data/maid/fuse/
mkdir /data/maid/fuse/10/
go run postprocess/fuse.go /data/annotations.json normal /data/identity/ /data/maid/out/10/ /data/maid/fuse/10/

Optionally, visualize an inferred road network. Below, 6 can be changed to any annotation index corresponding to /data/annotations.json.

go run vis/visualize_inferred.go /data/annotations.json 6 /data/naip/jpg/ /data/graphs/graphs/ /data/maid/fuse/10/ default ./

The command above should produce an image ./6.jpg.

Evaluation

For each confidence threshold, run e.g.:

python metrics/apls.py /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json
go run metrics/geo.go /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json

Above, the first command computes APLS (which takes a long time to run) while the second computes PixelF1 (aka GEO metric). These commands produce scores.json and geo.json files respectively in the /data/maid/fuse/10/ directory containing metric outputs for each test scenario.

To obtain error rate:

go run metrics/error_rate.go /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json

To produce a precision-recall curve from the scores across multiple confidence thresholds, run:

python metrics/score_details.py /data/annotations.json /data/maid/fuse/{10,20,30,40,50}/geo.json

Building the Dataset

The documentation below outlines how the dataset was built. You do not need to follow these steps unless you are trying to replicate the dataset from raw NAIP aerial images from Google EarthEngine and OpenStreetMap history dumps.

Dataset Pre-processing

We preprocess raw NAIP and OSM data using the code in go/preprocess.

  1. Obtain NAIP images from Google EarthEngine.
  2. Obtain us-internal.osh.pbf from https://download.geofabrik.de/north-america/us.html
  3. Extract history around individual cities: go run preprocess/osm_space_filter.go /data/graphs/big/us-internal.osh.pbf /data/graphs/history/
  4. Extract OSM dumps at different times: python3 preprocess/osm_time_filter.py /data/graphs/history/ /data/graphs/osm/
  5. Convert NAIP images to JPG: python3 preprocess/tif_to_jpg.py /data/naip/tif/ /data/naip/jpg/
  6. Record the NAIP image sizes (needed for coordinate transforms and such): python3 preprocess/save_image_sizes.py /data/naip/jpg/ /data/sizes.json
  7. Convert to MUNO21 .graph file format: go run preprocess/osm_to_graph.go /data/graphs/osm/ /data/graphs/graphs/
  8. Randomly split the cities into train/test: python3 preprocess/pick_train_test.py /data/graphs/history/ /data/
  9. (Optional) Visualize the graph and image extracted at a tile: python3 vis/vis.py /data/naip/jpg/ny_1_0_2019.jpg /data/graphs/graphs/ny_1_0_2018-07-01.graph out.jpg

Candidate Generation and Clustering

We then generate and cluster candidates.

  1. Candidate generation: go run annotate/find_changed_roads.go /data/graphs/graphs/ /data/changes/
  2. Clustering: go run annotate/cluster_changes.go /data/changes/ /data/cluster/
  3. No-change windows: go run annotate/find_nochange.go /data/graphs/graphs/ /data/cluster-nochange/
  4. Output visualizations for annotation: go run annotate/visualize_clusters.go /data/cluster/ /data/naip/jpg/ /data/graphs/graphs/ /data/vis/

Annotation Post-processing

After using the annotation tools like go/annotate, we process the output annotations into JSON file:

  1. Convert annotation data to JSON: go run process_annotations.go /data/cluster/ /data/annotations.txt /data/cluster-nochange/ /data/annotations.json
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma đŸ”„ News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022