Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Overview

Interactive All-Hex Meshing via Cuboid Decomposition

teaser Video demonstration

This repository contains an interactive software to the PolyCube-based hex-meshing problem. You can solve hex meshing by playing minecraft!

Features include:

  • a 4-stage interactive pipeline that can robustly generate high-quality hex meshes from an input tetrahedral mesh;
  • extensive user control over each stage, such as editing the voxelized PolyCube, positioning surface vertices, and exploring the trade-off among competing quality metrics;
  • automatic alternatives based on GPU-powered continuous optimization that can run at interactive speed.

It is the original implementation of the SIGGRAPH Asia 2021 paper "Interactive All-Hex Meshing via Cuboid Decomposition" by Lingxiao Li, Paul Zhang, Dmitriy Smirnov, Mazdak Abulnaga, Justin Solomon. Check out our paper for a complete description of our pipeline!

Organization

There are three main components of the project.

  • The geomlib folder contains a standalone C++ library with GPU-based geometric operations including point-triangle projection (in arbitrary dimensions), point-tetrahedron projection (in arbitrary dimensions), point-in-tet-mesh inclusion testing, sampling on a triangular mesh, capable of handling tens of thousands of point queries on large meshes in milliseconds.
  • The vkoo folder contains a standalone object-oriented Vulkan graphics engine that is built based on the official Vulkan samples code with a lot of simplification and modification for the purpose of this project.
  • The hex folder contains the application-specific code for our interactive PolyCube-based hex meshing software, and should be most relevant for learning about the implementation details of our paper.

In addition,

  • results.zip contains the *.h5 project file and the *.mesh output hex mesh file for each model in the Table 2 of the paper. The *.h5 project files can be loaded in our software using File > Open.
  • The assets folder contains a small number of tetrahedral meshes to test on, but you can include your own meshes easily (if you only have triangular meshes, try using TetGen or this to mesh the interior first).
  • The external folder contains additional dependencies that are included in the repo.

Dependencies

Main dependencies that are not included in the repo and should be installed first:

  • CMake
  • CUDA (tested with 11.2, 11.3, 11.4, 11.5) and cuDNN
  • Pytorch C++ frontend (tested with 1.7, 1.8, 1.9, 1.10)
  • Vulkan SDK
  • Python3
  • HDF5

There are additional dependencies in external and should be built correctly with the provided CMake hierarchy:

  • Eigen
  • glfw
  • glm
  • glslang
  • imgui
  • spdlog
  • spirv-cross
  • stb
  • yaml-cpp

Linux Instruction

The instruction is slightly different on various Linux distributions. We have tested on Arch Linux and Ubuntu 20.04. First install all dependencies above using the respective package manager. Then download and unzip Pytorch C++ frontend for Linux (tested with cxx11 ABI) -- it should be under the tab Libtorch > C++/Java > CUDA 11.x. Add Torch_DIR=<unzipped folder> to your environment variable lists (or add your unzipped folder to CMAKE_PREFIX_PATH). Then clone the repo (be sure to use --recursive to clone the submodules as well). Next run the usual cmake/make commands to build target hex in Debug or Release mode:

mkdir -p build/Release
cd build/Release
cmake ../.. -DCMAKE_BUILD_TYPE=Release
make hex -j

This should generate an executable named hex under bin/Release/hex which can be run directly. See CMakeLists.txt for more information.

Windows Instruction

Compiling on Windows is trickier than on Linux. The following procedure has been tested to work on multiple Windows machines.

  • Download and install Visual Studio 2019
  • Download and install the newest CUDA Toolkit (tested with 11.2)
  • Download and install cuDNN for Windows (this amounts to copying a bunch of dll's to the CUDA path)
  • Download and install the newest Vulkan SDK binary for Windows
  • Download and install Python3
  • Download and unzip Pytorch C++ frontend for Windows. Then add TORCH_DIR=<unzipped folder> to your environment variable lists.
  • Download and install HDF5 for Windows
  • In VS2019, install CMake tools, and then build the project following this This should generate an executable under bin/Debug or bin/Release.
Owner
Lingxiao Li
Lingxiao Li
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023