SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

Overview

SuMa++: Efficient LiDAR-based Semantic SLAM

This repository contains the implementation of SuMa++, which generates semantic maps only using three-dimensional laser range scans.

Developed by Xieyuanli Chen and Jens Behley.

SuMa++ is built upon SuMa and RangeNet++. For more details, we refer to the original project websites SuMa and RangeNet++.

An example of using SuMa++: ptcl

Table of Contents

  1. Introduction
  2. Publication
  3. Dependencies
  4. Build
  5. How to run
  6. More Related Work
  7. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper:

@inproceedings{chen2019iros, 
		author = {X. Chen and A. Milioto and E. Palazzolo and P. Giguère and J. Behley and C. Stachniss},
		title  = {{SuMa++: Efficient LiDAR-based Semantic SLAM}},
		booktitle = {Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)},
		year = {2019},
		codeurl = {https://github.com/PRBonn/semantic_suma/},
		videourl = {https://youtu.be/uo3ZuLuFAzk},
}

Dependencies

  • catkin
  • Qt5 >= 5.2.1
  • OpenGL >= 4.0
  • libEigen >= 3.2
  • gtsam >= 4.0 (tested with 4.0.0-alpha2)

In Ubuntu 16.04: Installing all dependencies should be accomplished by

sudo apt-get install build-essential cmake libgtest-dev libeigen3-dev libboost-all-dev qtbase5-dev libglew-dev libqt5libqgtk2 catkin

Additionally, make sure you have catkin-tools and the fetch verb installed:

sudo apt install python-pip
sudo pip install catkin_tools catkin_tools_fetch empy

Build

rangenet_lib

To use SuMa++, you need to first build the rangenet_lib with the TensorRT and C++ interface. For more details about building and using rangenet_lib you could find in rangenet_lib.

SuMa++

Clone the repository in the src directory of the same catkin workspace where you built the rangenet_lib:

git clone https://github.com/PRBonn/semantic_suma.git

Download the additional dependencies (or clone glow into your catkin workspace src yourself):

catkin deps fetch

For the first setup of your workspace containing this project, you need:

catkin build --save-config -i --cmake-args -DCMAKE_BUILD_TYPE=Release -DOPENGL_VERSION=430 -DENABLE_NVIDIA_EXT=YES

Where you have to set OPENGL_VERSION to the supported OpenGL core profile version of your system, which you can query as follows:

$ glxinfo | grep "version"
server glx version string: 1.4
client glx version string: 1.4
GLX version: 1.4
OpenGL core profile version string: 4.3.0 NVIDIA 367.44
OpenGL core profile shading language version string: 4.30 NVIDIA [...]
OpenGL version string: 4.5.0 NVIDIA 367.44
OpenGL shading language version string: 4.50 NVIDIA

Here the line OpenGL core profile version string: 4.3.0 NVIDIA 367.44 is important and therefore you should use -DOPENGL_VERSION = 430. If you are unsure you can also leave it on the default version 330, which should be supported by all OpenGL-capable devices.

If you have a NVIDIA device, like a Geforce or Quadro graphics card, you should also activate the NVIDIA extensions using -DENABLE_NVIDIA_EXT=YES for info about the current GPU memory usage of the program.

After this setup steps, you can build with catkin build, since the configuration has been saved to your current Catkin profile (therefore, --save-config was needed).

Now the project root directory (e.g. ~/catkin_ws/src/semantic_suma) should contain a bin directory containing the visualizer.

How to run

Important Notice

  • Before running SuMa++, you need to first build the rangenet_lib and download the pretrained model.
  • You need to specify the model path in the configuration file in the config/ folder.
  • For the first time using, rangenet_lib will take several minutes to build a .trt model for SuMa++.
  • SuMa++ now can only work with KITTI dataset, since the semantic segmentation may not generalize well in other environments.
  • To use SuMa++ with your own dataset, you may finetune or retrain the semantic segmentation network.

All binaries are copied to the bin directory of the source folder of the project. Thus,

  1. run visualizer in the bin directory by ./visualizer,
  2. open a Velodyne directory from the KITTI Visual Odometry Benchmark and select a ".bin" file,
  3. start the processing of the scans via the "play button" in the GUI.

More Related Work

OverlapNet - Loop Closing for 3D LiDAR-based SLAM

This repo contains the code for our RSS2020 paper: OverlapNet - Loop Closing for 3D LiDAR-based SLAM.

OverlapNet is a modified Siamese Network that predicts the overlap and relative yaw angle of a pair of range images generated by 3D LiDAR scans, which can be used for place recognition and loop closing.

Overlap-based LiDAR Global Localization

This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

It uses the OverlapNet to train an observation model for Monte Carlo Localization and achieves global localization with 3D LiDAR scans.

License

Copyright 2019, Xieyuanli Chen, Jens Behley, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022