Deep learning models for change detection of remote sensing images

Overview

Change Detection Models (Remote Sensing)

Python library with Neural Networks for Change Detection based on PyTorch.

โšก โšก โšก I am trying to build this project, if you are interested, don't hesitate to join us!

๐Ÿ‘ฏ ๐Ÿ‘ฏ ๐Ÿ‘ฏ Contact me at [email protected] or pull a request directly.


This project is inspired by segmentation_models.pytorch and built based on it. ๐Ÿ˜„

๐ŸŒฑ How to use

Please refer to local_test.py temporarily.


๐Ÿ”ญ Models

Architectures

Encoders

The following is a list of supported encoders in the CDP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (encoder_name and encoder_weights parameters).

ResNet
Encoder Weights Params, M
resnet18 imagenet / ssl / swsl 11M
resnet34 imagenet 21M
resnet50 imagenet / ssl / swsl 23M
resnet101 imagenet 42M
resnet152 imagenet 58M
ResNeXt
Encoder Weights Params, M
resnext50_32x4d imagenet / ssl / swsl 22M
resnext101_32x4d ssl / swsl 42M
resnext101_32x8d imagenet / instagram / ssl / swsl 86M
resnext101_32x16d instagram / ssl / swsl 191M
resnext101_32x32d instagram 466M
resnext101_32x48d instagram 826M
ResNeSt
Encoder Weights Params, M
timm-resnest14d imagenet 8M
timm-resnest26d imagenet 15M
timm-resnest50d imagenet 25M
timm-resnest101e imagenet 46M
timm-resnest200e imagenet 68M
timm-resnest269e imagenet 108M
timm-resnest50d_4s2x40d imagenet 28M
timm-resnest50d_1s4x24d imagenet 23M
Res2Ne(X)t
Encoder Weights Params, M
timm-res2net50_26w_4s imagenet 23M
timm-res2net101_26w_4s imagenet 43M
timm-res2net50_26w_6s imagenet 35M
timm-res2net50_26w_8s imagenet 46M
timm-res2net50_48w_2s imagenet 23M
timm-res2net50_14w_8s imagenet 23M
timm-res2next50 imagenet 22M
RegNet(x/y)
Encoder Weights Params, M
timm-regnetx_002 imagenet 2M
timm-regnetx_004 imagenet 4M
timm-regnetx_006 imagenet 5M
timm-regnetx_008 imagenet 6M
timm-regnetx_016 imagenet 8M
timm-regnetx_032 imagenet 14M
timm-regnetx_040 imagenet 20M
timm-regnetx_064 imagenet 24M
timm-regnetx_080 imagenet 37M
timm-regnetx_120 imagenet 43M
timm-regnetx_160 imagenet 52M
timm-regnetx_320 imagenet 105M
timm-regnety_002 imagenet 2M
timm-regnety_004 imagenet 3M
timm-regnety_006 imagenet 5M
timm-regnety_008 imagenet 5M
timm-regnety_016 imagenet 10M
timm-regnety_032 imagenet 17M
timm-regnety_040 imagenet 19M
timm-regnety_064 imagenet 29M
timm-regnety_080 imagenet 37M
timm-regnety_120 imagenet 49M
timm-regnety_160 imagenet 80M
timm-regnety_320 imagenet 141M
GERNet
Encoder Weights Params, M
timm-gernet_s imagenet 6M
timm-gernet_m imagenet 18M
timm-gernet_l imagenet 28M
SE-Net
Encoder Weights Params, M
senet154 imagenet 113M
se_resnet50 imagenet 26M
se_resnet101 imagenet 47M
se_resnet152 imagenet 64M
se_resnext50_32x4d imagenet 25M
se_resnext101_32x4d imagenet 46M
SK-ResNe(X)t
Encoder Weights Params, M
timm-skresnet18 imagenet 11M
timm-skresnet34 imagenet 21M
timm-skresnext50_32x4d imagenet 25M
DenseNet
Encoder Weights Params, M
densenet121 imagenet 6M
densenet169 imagenet 12M
densenet201 imagenet 18M
densenet161 imagenet 26M
Inception
Encoder Weights Params, M
inceptionresnetv2 imagenet / imagenet+background 54M
inceptionv4 imagenet / imagenet+background 41M
xception imagenet 22M
EfficientNet
Encoder Weights Params, M
efficientnet-b0 imagenet 4M
efficientnet-b1 imagenet 6M
efficientnet-b2 imagenet 7M
efficientnet-b3 imagenet 10M
efficientnet-b4 imagenet 17M
efficientnet-b5 imagenet 28M
efficientnet-b6 imagenet 40M
efficientnet-b7 imagenet 63M
timm-efficientnet-b0 imagenet / advprop / noisy-student 4M
timm-efficientnet-b1 imagenet / advprop / noisy-student 6M
timm-efficientnet-b2 imagenet / advprop / noisy-student 7M
timm-efficientnet-b3 imagenet / advprop / noisy-student 10M
timm-efficientnet-b4 imagenet / advprop / noisy-student 17M
timm-efficientnet-b5 imagenet / advprop / noisy-student 28M
timm-efficientnet-b6 imagenet / advprop / noisy-student 40M
timm-efficientnet-b7 imagenet / advprop / noisy-student 63M
timm-efficientnet-b8 imagenet / advprop 84M
timm-efficientnet-l2 noisy-student 474M
timm-efficientnet-lite0 imagenet 4M
timm-efficientnet-lite1 imagenet 5M
timm-efficientnet-lite2 imagenet 6M
timm-efficientnet-lite3 imagenet 8M
timm-efficientnet-lite4 imagenet 13M
MobileNet
Encoder Weights Params, M
mobilenet_v2 imagenet 2M
timm-mobilenetv3_large_075 imagenet 1.78M
timm-mobilenetv3_large_100 imagenet 2.97M
timm-mobilenetv3_large_minimal_100 imagenet 1.41M
timm-mobilenetv3_small_075 imagenet 0.57M
timm-mobilenetv3_small_100 imagenet 0.93M
timm-mobilenetv3_small_minimal_100 imagenet 0.43M
DPN
Encoder Weights Params, M
dpn68 imagenet 11M
dpn68b imagenet+5k 11M
dpn92 imagenet+5k 34M
dpn98 imagenet 58M
dpn107 imagenet+5k 84M
dpn131 imagenet 76M
VGG
Encoder Weights Params, M
vgg11 imagenet 9M
vgg11_bn imagenet 9M
vgg13 imagenet 9M
vgg13_bn imagenet 9M
vgg16 imagenet 14M
vgg16_bn imagenet 14M
vgg19 imagenet 20M
vgg19_bn imagenet 20M

๐Ÿšš Dataset

๐Ÿ“ƒ Citing

@misc{likyoocdp:2021,
  Author = {Kaiyu Li, Fulin Sun},
  Title = {Change Detection Pytorch},
  Year = {2021},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/likyoo/change_detection.pytorch}}
}

๐Ÿ“š Reference

Comments
  • Suggest to loosen the dependency on albumentations

    Suggest to loosen the dependency on albumentations

    Hi, your project change_detection.pytorch(commit id: 0a86d51b31276d9c413798ab3fb332889f02d8aa) requires "albumentations==1.0.3" in its dependency. After analyzing the source code, we found that the following versions of albumentations can also be suitable, i.e., albumentations 1.0.0, 1.0.1, 1.0.2, since all functions that you directly (8 APIs: albumentations.core.transforms_interface.BasicTransform.init, albumentations.augmentations.geometric.resize.Resize.init, albumentations.core.composition.Compose.init, albumentations.pytorch.transforms.ToTensorV2.init, albumentations.augmentations.crops.functional.random_crop, albumentations.core.transforms_interface.DualTransform.init, albumentations.augmentations.crops.transforms.RandomCrop.init, albumentations.augmentations.transforms.Normalize.init) or indirectly (propagate to 11 albumentations's internal APIs and 0 outsider APIs) used from the package have not been changed in these versions, thus not affecting your usage.

    Therefore, we believe that it is quite safe to loose your dependency on albumentations from "albumentations==1.0.3" to "albumentations>=1.0.0,<=1.0.3". This will improve the applicability of change_detection.pytorch and reduce the possibility of any further dependency conflict with other projects.

    May I pull a request to further loosen the dependency on albumentations?

    By the way, could you please tell us whether such an automatic tool for dependency analysis may be potentially helpful for maintaining dependencies easier during your development?

    opened by Agnes-U 3
  • dimensional error

    dimensional error

    ๆ‚จๅฅฝ๏ผŒๆˆ‘ๅœจ่ฟ่กŒlocal_test.pyๆ–‡ไปถๆ—ถๅ‡บ็Žฐไบ†้”™่ฏฏ๏ผŒ่€Œๆˆ‘ไธ€็›ด่งฃๅ†ณไธไบ†๏ผŒ้”™่ฏฏๅฆ‚ไธ‹๏ผš RuntimeError: Expected 4-dimensional input for 4-dimensional weight [64, 3, 7, 7], but got 3-dimensional input of size [3, 256, 256] instead ๆˆ‘ๆƒณ็Ÿฅ้“[6,3,7,7]ไปฃ่กจ็š„ๆ˜ฏไป€ไนˆ๏ผŸ ่ฟ™ไธช้”™่ฏฏๆ˜ฏๅ‘็”Ÿๅœจvaled้ƒจๅˆ†๏ผŒๅœจๆ‰ง่กŒepoch1ๆ—ถtrainๅฏไปฅๆญฃๅธธ่ฏปๅ–ๅ›พ็‰‡ๅนถ่ฟ่กŒ๏ผŒไฝ†ๅˆฐvaledๅฐฑๆŠฅ้”™ไบ†๏ผŒๅธŒๆœ›่ƒฝ่Žทๅพ—ๆ‚จ็š„ๅปบ่ฎฎใ€‚

    opened by 18339185538 0
  • Evaluation with different thresholds give the same results

    Evaluation with different thresholds give the same results

    This piece of code :

    for x in np.arange(0.6, 0.9, 0.1):
        print('Eval with TH:', x)
        metrics = [
            cdp.utils.metrics.Fscore(activation='argmax2d', threshold=x),
            cdp.utils.metrics.Precision(activation='argmax2d', threshold=x),
            cdp.utils.metrics.Recall(activation='argmax2d', threshold=x),
        ]
    
        valid_epoch = cdp.utils.train.ValidEpoch(
            model,
            loss=loss,
            metrics=metrics,
            device=DEVICE,
            verbose=True,
        )
    
        valid_logs = valid_epoch.run(valid_loader)
        print(valid_logs)
    

    Give me the following result:

    Eval with TH: 0.6
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:12<00:00,  6.98it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.0870812193864016, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    Eval with TH: 0.7
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:12<00:00,  6.99it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.08708121913835626, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    Eval with TH: 0.7999999999999999
    valid: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 505/505 [01:11<00:00,  7.02it/s, cross_entropy_loss - 0.08708, fscore - 0.8799, precision - 0.8946, recall - 0.8789]
    {'cross_entropy_loss': 0.08708121978843793, 'fscore': 0.8798528309538921, 'precision': 0.8946225793644936, 'recall': 0.8789094516579565}
    
    opened by mikel-brostrom 0
  • Load trained model weigths

    Load trained model weigths

    Hi @likyoo ,

    I study with yoru repo for my project.I have been added to new features to your repo.I'll share it with you when I'm done.

    But I have a significant question;

    How can I load weigths after training operation?

    opened by ozanpkr 1
  • How to test on new images?

    How to test on new images?

    Dear @likyoo thanks for your open source project. I have trained models and saved the best model. Now, how can I test model on new images (not validation)

    opened by manapshymyr-OB 0
Releases(v0.1.0)
Owner
Kaiyu Li
CV & RS & ML Sys
Kaiyu Li
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

ๆต…ๆขฆ 828 Jan 04, 2023
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudรฉ 1 Jun 28, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork ๐Ÿ‘€ : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. ๐Ÿ‘‰ https:

Gaurav 16 Oct 29, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023