An OpenAI Gym environment for Super Mario Bros

Overview

gym-super-mario-bros

BuildStatus PackageVersion PythonVersion Stable Format License

Mario

An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) using the nes-py emulator.

Installation

The preferred installation of gym-super-mario-bros is from pip:

pip install gym-super-mario-bros

Usage

Python

You must import gym_super_mario_bros before trying to make an environment. This is because gym environments are registered at runtime. By default, gym_super_mario_bros environments use the full NES action space of 256 discrete actions. To contstrain this, gym_super_mario_bros.actions provides three actions lists (RIGHT_ONLY, SIMPLE_MOVEMENT, and COMPLEX_MOVEMENT) for the nes_py.wrappers.JoypadSpace wrapper. See gym_super_mario_bros/actions.py for a breakdown of the legal actions in each of these three lists.

from nes_py.wrappers import JoypadSpace
import gym_super_mario_bros
from gym_super_mario_bros.actions import SIMPLE_MOVEMENT
env = gym_super_mario_bros.make('SuperMarioBros-v0')
env = JoypadSpace(env, SIMPLE_MOVEMENT)

done = True
for step in range(5000):
    if done:
        state = env.reset()
    state, reward, done, info = env.step(env.action_space.sample())
    env.render()

env.close()

NOTE: gym_super_mario_bros.make is just an alias to gym.make for convenience.

NOTE: remove calls to render in training code for a nontrivial speedup.

Command Line

gym_super_mario_bros features a command line interface for playing environments using either the keyboard, or uniform random movement.

gym_super_mario_bros -e <the environment ID to play> -m <`human` or `random`>

NOTE: by default, -e is set to SuperMarioBros-v0 and -m is set to human.

Environments

These environments allow 3 attempts (lives) to make it through the 32 stages in the game. The environments only send reward-able game-play frames to agents; No cut-scenes, loading screens, etc. are sent from the NES emulator to an agent nor can an agent perform actions during these instances. If a cut-scene is not able to be skipped by hacking the NES's RAM, the environment will lock the Python process until the emulator is ready for the next action.

Environment Game ROM Screenshot
SuperMarioBros-v0 SMB standard
SuperMarioBros-v1 SMB downsample
SuperMarioBros-v2 SMB pixel
SuperMarioBros-v3 SMB rectangle
SuperMarioBros2-v0 SMB2 standard
SuperMarioBros2-v1 SMB2 downsample

Individual Stages

These environments allow a single attempt (life) to make it through a single stage of the game.

Use the template

SuperMarioBros-<world>-<stage>-v<version>

where:

  • <world> is a number in {1, 2, 3, 4, 5, 6, 7, 8} indicating the world
  • <stage> is a number in {1, 2, 3, 4} indicating the stage within a world
  • <version> is a number in {0, 1, 2, 3} specifying the ROM mode to use
    • 0: standard ROM
    • 1: downsampled ROM
    • 2: pixel ROM
    • 3: rectangle ROM

For example, to play 4-2 on the downsampled ROM, you would use the environment id SuperMarioBros-4-2-v1.

Random Stage Selection

The random stage selection environment randomly selects a stage and allows a single attempt to clear it. Upon a death and subsequent call to reset, the environment randomly selects a new stage. This is only available for the standard Super Mario Bros. game, not Lost Levels (at the moment). To use these environments, append RandomStages to the SuperMarioBros id. For example, to use the standard ROM with random stage selection use SuperMarioBrosRandomStages-v0. To seed the random stage selection use the seed method of the env, i.e., env.seed(1), before any calls to reset.

Step

Info about the rewards and info returned by the step method.

Reward Function

The reward function assumes the objective of the game is to move as far right as possible (increase the agent's x value), as fast as possible, without dying. To model this game, three separate variables compose the reward:

  1. v: the difference in agent x values between states
    • in this case this is instantaneous velocity for the given step
    • v = x1 - x0
      • x0 is the x position before the step
      • x1 is the x position after the step
    • moving right ⇔ v > 0
    • moving left ⇔ v < 0
    • not moving ⇔ v = 0
  2. c: the difference in the game clock between frames
    • the penalty prevents the agent from standing still
    • c = c0 - c1
      • c0 is the clock reading before the step
      • c1 is the clock reading after the step
    • no clock tick ⇔ c = 0
    • clock tick ⇔ c < 0
  3. d: a death penalty that penalizes the agent for dying in a state
    • this penalty encourages the agent to avoid death
    • alive ⇔ d = 0
    • dead ⇔ d = -15

r = v + c + d

The reward is clipped into the range (-15, 15).

info dictionary

The info dictionary returned by the step method contains the following keys:

Key Type Description
coins int The number of collected coins
flag_get bool True if Mario reached a flag or ax
life int The number of lives left, i.e., {3, 2, 1}
score int The cumulative in-game score
stage int The current stage, i.e., {1, ..., 4}
status str Mario's status, i.e., {'small', 'tall', 'fireball'}
time int The time left on the clock
world int The current world, i.e., {1, ..., 8}
x_pos int Mario's x position in the stage (from the left)
y_pos int Mario's y position in the stage (from the bottom)

Citation

Please cite gym-super-mario-bros if you use it in your research.

@misc{gym-super-mario-bros,
  author = {Christian Kauten},
  howpublished = {GitHub},
  title = {{S}uper {M}ario {B}ros for {O}pen{AI} {G}ym},
  URL = {https://github.com/Kautenja/gym-super-mario-bros},
  year = {2018},
}
Owner
Andrew Stelmach
Andrew Stelmach
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022