No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

Related tags

Deep LearningTReS
Overview



wacv2021

Creat Environment

This code is train and test on Ubuntu 16.04 while using Anaconda, python 3.6.6, and pytorch 1.8.0. To set up the evironment run: conda env create -f environment.yml after installing the virtuall env you should be able to run python -c "import torch; print(torch.__version__)" in the terminal and see 1.8.0

Datasets

In this work we use 7 datasets for evaluation (LIVE, CSIQ, TID2013, KADID10K, CLIVE, KonIQ, LIVEFB)

To start training please make sure to follow the correct folder structure for each of the aformentioned datasets as provided bellow:

LIVE
live
    |--fastfading
    |    |  ...     
    |--blur
    |    |  ... 
    |--jp2k
    |    |  ...     
    |--jpeg
    |    |  ...     
    |--wn
    |    |  ...     
    |--refimgs
    |    |  ...     
    |--dmos.mat
    |--dmos_realigned.mat
    |--refnames_all.mat
    |--readme.txt
CSIQ
csiq
    |--dst_imgs_all
    |    |--1600.AWGN.1.png
    |    |  ... (you need to put all the distorted images here)
    |--src_imgs
    |    |--1600.png
    |    |  ...
    |--csiq.DMOS.xlsx
    |--csiq_label.txt
TID2013
tid2013
    |--distorted_images
    |--reference_images
    |--mos.txt
    |--mos_std.txt
    |--mos_with_names.txt
    |--readme
KADID10K
kadid10k
    |--distorted_images
    |    |--I01_01_01.png
    |    |  ...    
    |--reference_images
    |    |--I01.png
    |    |  ...    
    |--dmos.csv
    |--mv.sh.save
    |--mvv.sh
CLIVE
clive
    |--Data
    |    |--I01_01_01.png
    |    |  ...    
    |--Images
    |    |--I01.png
    |    |  ...    
    |--ChallengeDB_release
    |    |--README.txt
    |--dmos.csv
    |--mv.sh.save
    |--mvv.sh
KonIQ
fblive
   |--1024x768
   |    |  992920521.jpg 
   |    |  ... (all the images should be here)     
   |--koniq10k_scores_and_distributions.csv
LIVEFB
fblive
   |--FLIVE
   |    |  AVA__149.jpg    
   |    |  ... (all the images should be here)     
   |--labels_image.csv

Training

The training scrips are provided in the run.sh. Please change the paths correspondingly. Please note that to achive the same performace the parameters should match the ones in the run.sh files.

Pretrained models

The pretrain models are provided here.

Acknowledgement

This code is borrowed parts from HyperIQA and DETR.

FAQs

- What is the difference between self-consistency and ensembling? and will the self-consistency increase the interface time? In ensampling methods, we need to have several models (with different initializations) and ensemble the results during the training and testing, but in our self-consistency model, we enforce one model to have consistent performance for one network during the training while the network has an input with different transformations. Our self-consistency model has the same interface time/parameters in the testing similar to the model without self-consistency. In other words, we are not adding any new parameters to the network and it won't affect the interface.
- What is the difference between self-consistency and augmentation? In augmentation, we augment an input and send it to one network, so although the network will become robust to different augmentation, it will never have the chance of enforcing the outputs to be the same for different versions of an input at the same time. In our self-consistency approach, we force the network to have a similar output for an image with a different transformation (in our case horizontal flipping) which leads to more robust performance. Please also note that we still use augmentation during the training, so our model is benefiting from the advantages of both augmentation and self-consistency. Also, please see Fig. 1 in the main paper, where we showed that models that used augmentation alone are sensitive to simple transformations.
- Why does the relative ranking loss apply to the samples with the highest and lowest quality scores, why not applying it to all the samples? 1) We did not see a significant improvement by applying our ranking loss to all the samples within each batch compared to the case that we just use extreme cases. 2) Considering more samples lead to more gradient back-propagation and therefore more computation during the training which causes slower training.

Citation

If you find this work useful for your research, please cite our paper:

@InProceedings{golestaneh2021no,
  title={No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency},
  author={Golestaneh, S Alireza and Dadsetan, Saba and Kitani, Kris M},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={3209--3218},
  year={2022}
}

If you have any questions about our work, please do not hesitate to contact [email protected]

Owner
Alireza Golestaneh
Alireza Golestaneh
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022