Malware Bypass Research using Reinforcement Learning

Overview

MalwareRL

Malware Bypass Research using Reinforcement Learning

Background

This is a malware manipulation environment using OpenAI's gym environments. The core idea is based on paper "Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning" (paper). I am extending the original repo because:

  1. It is no longer maintained
  2. It uses Python2 and an outdated version of LIEF
  3. I wanted to integrate new Malware gym environments and additional manipulations

Over the past three years there have been breakthrough open-source projects published in the security ML space. In particular, Ember (Endgame Malware BEnchmark for Research) (paper) and MalConv: Malware detection by eating a whole exe (paper) have provided security researchers the ability to develop sophisticated, reproducible models that emulate features/techniques found in NGAVs.

MalwareRL Gym Environment

MalwareRL exposes gym environments for both Ember and MalConv to allow researchers to develop Reinforcement Learning agents to bypass Malware Classifiers. Actions include a variety of non-breaking (e.g. binaries will still execute) modifications to the PE header, sections, imports and overlay and are listed below.

Action Space

ACTION_TABLE = {
    'modify_machine_type': 'modify_machine_type',
    'pad_overlay': 'pad_overlay',
    'append_benign_data_overlay': 'append_benign_data_overlay',
    'append_benign_binary_overlay': 'append_benign_binary_overlay',
    'add_bytes_to_section_cave': 'add_bytes_to_section_cave',
    'add_section_strings': 'add_section_strings',
    'add_section_benign_data': 'add_section_benign_data',
    'add_strings_to_overlay': 'add_strings_to_overlay',
    'add_imports': 'add_imports',
    'rename_section': 'rename_section',
    'remove_debug': 'remove_debug',
    'modify_optional_header': 'modify_optional_header',
    'modify_timestamp': 'modify_timestamp',
    'break_optional_header_checksum': 'break_optional_header_checksum',
    'upx_unpack': 'upx_unpack',
    'upx_pack': 'upx_pack'
}

Observation Space

The observation_space of the gym environments are an array representing the feature vector. For ember this is numpy.array == 2381 and malconv numpy.array == 1024**2. The MalConv gym presents an opportunity to try RL techniques to generalize learning across large State Spaces.

Agents

A baseline agent RandomAgent is provided to demonstrate how to interact w/ gym environments and expected output. This agent attempts to evade the classifier by randomly selecting an action. This process is repeated up to the length of a game (e.g. 50 mods). If the modifed binary scores below the classifier threshold we register it as an evasion. In a lot of ways the RandomAgent acts as a fuzzer trying a bunch of actions with no regard to minimizing the modifications of the resulting binary.

Additional agents will be developed and made available (both model and code) in the coming weeks.

Table 1: Evasion Rate against Ember Holdout Dataset*

gym agent evasion_rate avg_ep_len
ember RandomAgent 89.2% 8.2
malconv RandomAgent 88.5% 16.33


* 250 random samples

Setup

To get malware_rl up and running you will need the follow external dependencies:

  • LIEF
  • Ember, Malconv and SOREL-20M models. All of these then need to be placed into the malware_rl/envs/utils/ directory.

    The SOREL-20M model requires use of the aws-cli in order to get. When accessing the AWS S3 bucket, look in the sorel-20m-model/checkpoints/lightGBM folder and fish out any of the models in the seed folders. The model file will need to be renamed to sorel.model and placed into malware_rl/envs/utils alongside the other models.

  • UPX has been added to support pack/unpack modifications. Download the binary here and place in the malware_rl/envs/controls directory.
  • Benign binaries - a small set of "trusted" binaries (e.g. grabbed from base Windows installation) you can download some via MSFT website (example). Store these binaries in malware_rl/envs/controls/trusted
  • Run strings command on those binaries and save the output as .txt files in malware_rl/envs/controls/good_strings
  • Download a set of malware from VirusShare or VirusTotal. I just used a list of hashes from the Ember dataset

Note: The helper script download_deps.py can be used as a quickstart to get most of the key dependencies setup.

I used a conda env set for Python3.7:

conda create -n malware_rl python=3.7

Finally install the Python3 dependencies in the requirements.txt.

pip3 install -r requirements.txt

References

The are a bunch of good papers/blog posts on manipulating binaries to evade ML classifiers. I compiled a few that inspired portions of this project below. Also, I have inevitably left out other pertinent reseach, so if there is something that should be in here let me know in an Git Issue or hit me up on Twitter (@filar).

Papers

  • Demetrio, Luca, et al. "Efficient Black-box Optimization of Adversarial Windows Malware with Constrained Manipulations." arXiv preprint arXiv:2003.13526 (2020). (paper)
  • Demetrio, Luca, et al. "Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection." arXiv preprint arXiv:2008.07125 (2020). (paper)
  • Song, Wei, et al. "Automatic Generation of Adversarial Examples for Interpreting Malware Classifiers." arXiv preprint arXiv:2003.03100 (2020). (paper)
  • Suciu, Octavian, Scott E. Coull, and Jeffrey Johns. "Exploring adversarial examples in malware detection." 2019 IEEE Security and Privacy Workshops (SPW). IEEE, 2019. (paper)
  • Fleshman, William, et al. "Static malware detection & subterfuge: Quantifying the robustness of machine learning and current anti-virus." 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2018. (paper)
  • Pierazzi, Fabio, et al. "Intriguing properties of adversarial ML attacks in the problem space." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020. (paper/code)
  • Fang, Zhiyang, et al. "Evading anti-malware engines with deep reinforcement learning." IEEE Access 7 (2019): 48867-48879. (paper)

Blog Posts

Talks

  • 42: The answer to life the universe and everything offensive security by Will Pearce, Nick Landers (slides)
  • Bot vs. Bot: Evading Machine Learning Malware Detection by Hyrum Anderson (slides)
  • Trying to Make Meterpreter into an Adversarial Example by Andy Applebaum (slides)
Owner
Bobby Filar
Security Data Science @ Elastic
Bobby Filar
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Atif Hassan 103 Dec 14, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022