Code repository for the paper "Tracking People with 3D Representations"

Related tags

Deep LearningT3DP
Overview

Tracking People with 3D Representations

Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site).
Jathushan Rajasegaran, Georgios Pavlakos, Angjoo Kanazawa, Jitendra Malik.
Neural Information Processing Systems (NeurIPS), 2021.

This code repository provides a code implementation for our paper T3DP, with installation, preparing datasets, and evaluating on datasets, and a demo code to run on any youtube videos.

Abstract : We present a novel approach for tracking multiple people in video. Unlike past approaches which employ 2D representations, we focus on using 3D representations of people, located in three-dimensional space. To this end, we develop a method, Human Mesh and Appearance Recovery (HMAR) which in addition to extracting the 3D geometry of the person as a SMPL mesh, also extracts appearance as a texture map on the triangles of the mesh. This serves as a 3D representation for appearance that is robust to viewpoint and pose changes. Given a video clip, we first detect bounding boxes corresponding to people, and for each one, we extract 3D appearance, pose, and location information using HMAR. These embedding vectors are then sent to a transformer, which performs spatio-temporal aggregation of the representations over the duration of the sequence. The similarity of the resulting representations is used to solve for associations that assigns each person to a tracklet. We evaluate our approach on the Posetrack, MuPoTs and AVA datasets. We find that 3D representations are more effective than 2D representations for tracking in these settings, and we obtain state-of-the-art performance.

Installation

We recommend creating a clean conda environment and install all dependencies. You can do this as follows:

conda env create -f _environment.yml

After the installation is complete you can activate the conda environment by running:

conda activate T3DP

Install PyOpenGL from this repository:

pip uninstall pyopengl
git clone https://github.com/mmatl/pyopengl.git
pip install ./pyopengl

Additionally, install Detectron2 from the official repository, if you need to run demo code on a local machine. We provide detections inside the _DATA folder, so for running the tracker on posetrack or mupots, you do not need to install Detectron2.

Download Data

We provide preprocessed files for PoseTrack and MuPoTs datasets (AVA files will be released soon!). Please download this folder and extract inside the main repository.

Training

To train the transformer model with posetrack data run,

python train_t3dp.py
--learning_rate 0.001
--lr_decay_epochs 10000,20000
--epochs 100000
--tags T3PO
--train_dataset posetrack_2018
--test_dataset posetrack_2018
--train_batch_size 32
--feature APK
--train

WANDB will create unique names for each run, and save the model names accordingly. Use this name for evaluation. We have also provided pretrained weights inside the _DATA folder.

Testing

Once the posetrack dataset is downloaded at "_DATA/Posetrack_2018/", run the following command to run our tracker on all validation videos.

python test_t3dp.py
--dataset "posetrack"
--dataset_path "_DATA/Posetrack_2018/"
--storage_folder "Videos_Final"
--render True
--save True

Evaluation

To evaluate the tracking performance on ID switches, MOTA, and IDF1 metrics, please run the following command.

python3 evaluate_t3dp.py out/Videos_Final/results/ t3dp posetrack

Demo

Please run the following command to run our method on a youtube video. This will download the youtube video from a given ID, and extract frames, run Detectron2, run HMAR and finally run our tracker and renders the video.

python3 demo.py

Results (Project site)

We evaluated our method on PoseTrack, MuPoTs and AVA datasets. Our results show significant improvements over the state-of-the-art methods on person tracking. For more results please visit our website.

Acknowledgements

Parts of the code are taken or adapted from the following repos:

Contact

Jathushan Rajasegaran - [email protected] or [email protected]
To ask questions or report issues, please open an issue on the issues tracker.
Discussions, suggestions and questions are welcome!

Citation

If you find this code useful for your research or the use data generated by our method, please consider citing the following paper:

@Inproceedings{rajasegaran2021tracking,
  title     = {Tracking People with 3D Representations},
  author    = {Rajasegaran, Jathushan and Pavlakos, Georgios and Kanazawa, Angjoo and Malik, Jitendra},
  Booktitle = {NeurIPS},
  year      = {2021}
}

Owner
Jathushan Rajasegaran
Jathushan Rajasegaran
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022