PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

Related tags

Deep LearningDRNet
Overview

DRNet for Video Indvidual Counting (CVPR 2022)

Introduction

This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning for Video Individual Counting. Different from the single image counting methods, it counts the total number of the pedestrians in a video sequence with a person in different frames only being calculated once. DRNet decomposes this new task to estimate the initial crowd number in the first frame and integrate differential crowd numbers in a set of following image pairs (namely current frame and preceding frame). framework

Catalog

  • Testing Code (2022.3.19)
  • PyTorch pretrained models (2022.3.19)
  • Training Code
    • HT21
    • SenseCrowd

Getting started

preparatoin

  • Clone this repo in the directory (Root/DRNet):

  • Install dependencies. We use python 3.7 and pytorch >= 1.6.0 : http://pytorch.org.

    conda create -n DRNet python=3.7
    conda activate DRNet
    conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch
    cd ${DRNet}
    pip install -r requirements.txt
  • PreciseRoIPooling for extracting the feature descriptors

    Note: the PreciseRoIPooling [1] module is included in the repo, but it's likely to have some problems when running the code:

    1. If you are prompted to install ninja, the following commands will help you.
      wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip
      sudo unzip ninja-linux.zip -d /usr/local/bin/
      sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force 
    2. If you encounter errors when compiling the PreciseRoIPooling, you can look up the original repo's issues for help.
  • Datasets

    • HT21 dataset: Download CroHD dataset from this link. Unzip HT21.zip and place HT21 into the folder (Root/dataset/).
    • SenseCrowd dataset: To be updated when it is released.
    • Download the lists of train/val/test sets at link: dataset., and place them to each dataset folder, respectively.

Training

Check some parameters in config.py before training,

  • Use __C.DATASET = 'HT21' to set the dataset (default: HT21).
  • Use __C.GPU_ID = '0' to set the GPU.
  • Use __C.MAX_EPOCH = 20 to set the number of the training epochs (default:20).
  • Use __C.EXP_PATH = os.path.join('./exp', __C.DATASET) to set the dictionary for saving the code, weights, and resume point.

Check other parameters (TRAIN_BATCH_SIZE, TRAIN_SIZE etc.) in the Root/DRNet/datasets/setting in case your GPU's memory is not support for the default setting.

  • run python train.py.

Tips: The training process takes ~10 hours on HT21 dataset with one TITAN RTX (24GB Memory).

Testing

To reproduce the performance, download the pre-trained models and then place pretrained_models folder to Root/DRNet/model/

  • for HT21:
    • Run python test_HT21.py.
  • for SenseCrowd:
    • Run python test_SENSE.py. Then the output file (*_SENSE_cnt.py) will be generated.

Performance

The results on HT21 and SenseCrowd.

  • HT21 dataset
Method CroHD11~CroHD15 MAE/MSE/MRAE(%)
Paper: VGG+FPN [2,3] 164.6/1075.5/752.8/784.5/382.3 141.1/192.3/27.4
This Repo's Reproduction: VGG+FPN [2,3] 138.4/1017.5/623.9/659.8/348.5 160.7/217.3/25.1
  • SenseCrowd dataset
Method MAE/MSE/MRAE(%) MIAE/MOAE D0~D4 (for MAE)
Paper: VGG+FPN [2,3] 12.3/24.7/12.7 1.98/2.01 4.1/8.0/23.3/50.0/77.0
This Repo's Reproduction: VGG+FPN [2,3] 11.7/24.6/11.7 1.99/1.88 3.6/6.8/22.4/42.6/85.2

Video Demo

Please visit bilibili or YouTube to watch the video demonstration. demo

References

  1. Acquisition of Localization Confidence for Accurate Object Detection, ECCV, 2018.
  2. Very Deep Convolutional Networks for Large-scale Image Recognition, arXiv, 2014.
  3. Feature Pyramid Networks for Object Detection, CVPR, 2017.

Citation

If you find this project is useful for your research, please cite:

@article{han2022drvic,
  title={DR.VIC: Decomposition and Reasoning for Video Individual Counting},
  author={Han, Tao, Bai Lei, Gao, Junyu, Qi Wang, and Ouyang  Wanli},
  booktitle={CVPR},
  year={2022}
}

Acknowledgement

The released PyTorch training script borrows some codes from the C^3 Framework and SuperGlue repositories. If you think this repo is helpful for your research, please consider cite them.

Owner
tao han
tao han
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022