[CVPR2021] Invertible Image Signal Processing

Overview

Invertible Image Signal Processing

Python 3.6 pytorch 1.4.0

This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)".

Figure: Our framework

Unprocessed RAW data is a highly valuable image format for image editing and computer vision. However, since the file size of RAW data is huge, most users can only get access to processed and compressed sRGB images. To bridge this gap, we design an Invertible Image Signal Processing (InvISP) pipeline, which not only enables rendering visually appealing sRGB images but also allows recovering nearly perfect RAW data. Due to our framework's inherent reversibility, we can reconstruct realistic RAW data instead of synthesizing RAW data from sRGB images, without any memory overhead. We also integrate a differentiable JPEG compression simulator that empowers our framework to reconstruct RAW data from JPEG images. Extensive quantitative and qualitative experiments on two DSLR demonstrate that our method obtains much higher quality in both rendered sRGB images and reconstructed RAW data than alternative methods.

Invertible Image Signal Processing
Yazhou Xing*, Zian Qian*, Qifeng Chen (* indicates joint first authors)
HKUST

[Paper] [Project Page] [Technical Video (Coming soon)]

Figure: Our results

Installation

Clone this repo.

git clone https://github.com/yzxing87/Invertible-ISP.git 
cd Invertible-ISP/

We have tested our code on Ubuntu 18.04 LTS with PyTorch 1.4.0, CUDA 10.1 and cudnn7.6.5. Please install dependencies by

conda env create -f environment.yml

Preparing datasets

We use MIT-Adobe FiveK Dataset for training and evaluation. To reproduce our results, you need to first download the NIKON D700 and Canon EOS 5D subsets from their website. The images (DNG) can be downloaded by

cd data/
bash data_preprocess.sh

The downloading may take a while. After downloading, we need to prepare the bilinearly demosaiced RAW and white balance parameters as network input, and ground truth sRGB (in JPEG format) as supervision.

python data_preprocess.py --camera="NIKON_D700"
python data_preprocess.py --camera="Canon_EOS_5D"

The dataset will be organized into

Path Size Files Format Description
data 585 GB 1 Main folder
├  Canon_EOS_5D 448 GB 1 Canon sub-folder
├  NIKON_D700 137 GB 1 NIKON sub-folder
    ├  DNG 2.9 GB 487 DNG In-the-wild RAW.
    ├  RAW 133 GB 487 NPZ Preprocessed RAW.
    ├  RGB 752 MB 487 JPG Ground-truth RGB.
├  NIKON_D700_train.txt 1 KB 1 TXT Training data split.
├  NIKON_D700_test.txt 5 KB 1 TXT Test data split.

Training networks

We specify the training arguments into train.sh. Simply run

cd ../
bash train.sh

The checkpoints will be saved into ./exps/{exp_name}/checkpoint/.

Test and evaluation

To reconstruct the RAW from JPEG RGB, we need to first save the rendered RGB into disk then do test to recover RAW. Original RAW images are too huge to be directly tested on one 2080 Ti GPU. We provide two ways to test the model.

  1. Subsampling the RAW for visualization purpose:
python test_rgb.py --task=EXPERIMENT_NAME \
                --data_path="./data/" \
                --gamma \
                --camera=CAMERA_NAME \
                --out_path=OUTPUT_PATH \
                --ckpt=CKPT_PATH

After finish, run

python test_raw.py --task=EXPERIMENT_NAME \
                --data_path="./data/" \
                --gamma \
                --camera=CAMERA_NAME \
                --out_path=OUTPUT_PATH \
                --ckpt=CKPT_PATH
  1. Spliting the RAW data into patches, for quantitatively evaluation purpose. Turn on the --split_to_patch argument. See test.sh. The PSNR and SSIM metrics can be obtained by
python cal_metrics.py --path=PATH_TO_SAVED_PATCHES

Citation

@inproceedings{xing21invertible,
  title     = {Invertible Image Signal Processing},
  author    = {Xing, Yazhou and Qian, Zian and Chen, Qifeng},
  booktitle = {CVPR},
  year      = {2021}
}

Acknowledgement

Part of the codes benefit from DiffJPEG and Invertible-Image-Rescaling.

Contact

Free feel to contact me if there is any question. (Yazhou Xing, [email protected])

Owner
Yazhou XING
Ph.D. Candidate at HKUST CSE
Yazhou XING
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
LIAO Shuiying 6 Dec 01, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022