The best solution of the Weather Prediction track in the Yandex Shifts challenge

Overview

License Apache 2.0 Python 3.7

yandex-shifts-weather

The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://research.yandex.com/shifts/weather

This information includes two my Jupyter-notebooks (deep_ensemble_with_uncertainty_and_spec_fe_eval.ipynb for evaluating only, and deep_ensemble_with_uncertainty_and_spec_fe.ipynb for all stages of my experiment), several auxiliary Python modules (from https://github.com/yandex-research/shifts/tree/main/weather), and my pre-trained models (see the models/yandex-shifts/weather subdirectory).

The proposed solution is the best on this track (see SNN Ens U MT Np SpecFE method in the corresponding leaderboard).

You can read a detailed description of all the algorithmic techniques implemented in my solution and their motivation in this paper: More layers! End-to-end regression and uncertainty on tabular data with deep learning.

If you use my solution in your work, please cite my paper using the following Bibtex:

@article{morelayers2021,
  author    = {Bondarenko, Ivan},
  title     = {More layers! End-to-end regression and uncertainty on tabular data with deep learning},
  journal   = {arXiv preprint arXiv:2112.03566},
  year      = {2021},
}

Reproducibility

For reproducibility you need to Python 3.7 or later (I checked all with Python 3.7). You have to clone this repository and install all dependencies (I recommend do it in a special Python environment):

git clone https://github.com/bond005/yandex-shifts-weather.git
pip install -r requirements.txt

My solution is based on deep learning and uses Tensorflow. So, you need a CUDA-compatible GPU for more efficient reproducibility of my code (I used two variants: nVidia V100 and nVidia GeForce 2080Ti).

After installing the dependencies, you need to do the following steps:

  1. Download all data of the Weather Prediction track in the Yandex Shifts challenge and unarchive it into the data/yandex-shifts/weather subdirectory. The training and development data can be downloaded here, and the data for final evaluation stage is available below this link. As a result, there will be four CSV-files in the abovementioned subdirectory:
  • train.csv
  • dev_in.csv
  • dev_out.csv
  • eval.csv
  1. Download the baseline models developed by the challenge organizers at the link, and unarchive their into the models/yandex-shifts/weather-baseline-catboost subdirectory. This step is optional, and it is only needed to compare my solution with the baseline on the development set (my pre-trained models are part of this repository, and they are available in the models/yandex-shifts/weather subdirectory).

  2. Run Jupyter notebook deep_ensemble_with_uncertainty_and_spec_fe_eval.ipynb for inference process reproducing. As a result, you will see the quality evaluation of my pre-trained models on the development set in comparison with the baseline. You will also get the predictions on the development and evaluation sets in the corresponding CSV files models/yandex-shifts/weather/df_submission_dev.csv and models/yandex-shifts/weather/df_submission.csv.

  3. If you want to reproduce the united process of training and inference (and not just inference, as in step 3), then you have to run another Jupyter notebook deep_ensemble_with_uncertainty_and_spec_fe.ipynb. All pre-trained models in the models/yandex-shifts/weather subdirectory will be rewritten. After that predictions will be generated (similar to step 3, but using new models). This step is optional.

Key ideas of the proposed method

A special deep ensemble (i.e. ensemble of deep neural networks) with uncertainty, hierarchicalmultitask learning and some other features is proposed. It is built on the basis of the following key techniques:

  1. A simple preprocessing is applied to the input data:
  • imputing: the missing values are replaced in all input columns following a simple constant strategy (fill value is −1);
  • quantization: each input column is discretized into quantile bins, and the number of these bins is detected automatically; after that the bin identifier can be considered as a quantized numerical value of the original feature;
  • standardization: each quantized column is standardized by removing the mean and scaling to unit variance;
  • decorrelation: all possible linear correlations are removed from the feature vectors discretized by above-mentioned way; the decorrelation is implemented using principal component analysis (PCA).
  1. An even simpler preprocessing is applied to targets: it is based only on removing the mean and scaling to unit variance.

  2. A deep neural network is built for regression with uncertainty:

  • self-normalization: this is a self-normalized neural network, also known as SNN [Klambaueret al. 2017];
  • inductive bias: neural network weights are tuned using a hierarchical multitask learning [Caruana 1997; Søgaardet al. 2016] with the temperature prediction as a high-level regression task and the coarsened temperature class recognition as a low-level classification task;
  • uncertainty: a special loss function similar to RMSEWithUncertainty is applied to training;
  • robustness: a supervised contrastive learning based on N-pairs loss [Sohn2016] is applied instead of the crossentropy-based classification as a low-level task in the hierarchical multitask learning; it provides more robustness of the trainable neural network [Khosla et al. 2020]
  1. A special technique of deep ensemble creation is implemented: it uses a model average approach like bagging, but new training and validation sub-sets for corresponding ensemble items are generated using stratification based on coarsened temperature classes.

The deep ensemble size is 20. Hyper-parameters of each neural network in the ensemble (hidden layer size, number of hidden layers and alpha-dropout as special version of dropout in SNN are the same. They are selected using a hybrid approach: first automatically, and then manually. The automatic approach is based on a Bayesian optimization with Gaussian Process regression, and it discovered the following hyper-parameter values for training the neural network in a single-task mode:

  • hidden layer size is 512;
  • number of hidden layers is 12;
  • alpha-dropout is 0.0003.

After the implementation of the hierarchical multitask learning, the depth was manually increased up to 18 hidden layers: the low-level task (classification or supervised constrastive learning) was added after the 12th layer, and the high-level task (regression with uncertainty) was added after the 18th layer. General architecture of single neural network is shown on the following figure. All "dense" components are feed-forward layers with self-normalization. Alpha-dropout is not shown to oversimplify the figure. The weather_snn_1_output layer estimates the mean and the standard deviation of normal distribution, which is implemented using theweather_snn_1_distribution layer. Another output layer named as weather_snn_1_projection calculates low-dimensional projections for the supervised contrastive learning.

Rectified ADAM [L. Liu et al. 2020] with Lookahead [M. R. Zhang et al. 2019] is used for training with the following parameters: learning rate is 0.0003, synchronization period is 6, and slow weights step size is 0.5. You can see the more detailed description of other training hyper-parameters in the Jupyter notebook deep_ensemble_with_uncertainty_and_spec_fe.ipynb.

Experiments

Experiments were conducted according to data partitioning in [Malinin et al. 2021, section 3.1]. Development and evaluation sets were not used for training and for hyper-parameter search. The quality of each modification of the method was first estimated on the development set, because all participants had access to the development set targets. After the preliminary estimation, the selected modification of the method was submitted to estimate R-AUC MSE on the evaluation set with targets concealed from participants.

In comparison with the baseline, the quality of the deep learning method is better (i.e. R-AUC MSE is less) on both datasets for testing:

  • the development set (for preliminary testing):
  1. proposed deep ensemble = 1.015;
  2. baseline (CatBoost ensemble) = 1.227;
  • the evaluation set (for final testing):
  1. proposed deep ensemble = 1.141;
  2. baseline (CatBoost ensemble) = 1.335.

Also, the results of the deep learning method are better with all possible values of the uncertainty threshold for retention.

The total number of all submitted methods at the evaluation phase is 73. Six selected results (top-5 results of all participants and the baseline result) are presented in the following table. The first three places are occupied by the following modifications of the proposed deep learning method:

  • SNN Ens U MT Np SpecFE is the final solution with "all-inclusive";
  • SNN Ens U MT Np v2 excludes the feature quantization;
  • SNN Ens U MT excludes the feature quantization too, and classification is used instead of supervised contrastive learning as the low-level task in the hierarchical multitask learning.
Rank Team Method R-AUC MSE
1 bond005 SNN Ens U MT Np SpecFE 1.1406288012
2 bond005 SNN Ens U MT Np v2 1.1415403291
3 bond005 SNN Ens U MT 1.1533415892
4 CabbeanWeather Steel box v2 1.1575201873
5 KDDI Research more seed ens 1.1593224114
55 Shifts Team Shifts Challenge 1.3353865316

The time characteristics of the solution with GPU using (Nvidia V100 or GeForce 2080 Ti) are:

  • the average inference time per sample is 0.063 milliseconds;
  • the total training time is about a day.
Owner
Ivan Yu. Bondarenko
Ivan Yu. Bondarenko
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022