Real-time Object Detection for Streaming Perception, CVPR 2022

Overview

StreamYOLO

Real-time Object Detection for Streaming Perception

Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian
Real-time Object Detection for Streaming Perception, CVPR 2022 (Oral)
Paper

Bestsoftwarechoose

Benchmark

Model size velocity sAP
0.5:0.95
sAP50 sAP75 weights COCO pretrained weights
StreamYOLO-s 600×960 1x 29.8 50.3 29.8 github github
StreamYOLO-m 600×960 1x 33.7 54.5 34.0 github github
StreamYOLO-l 600×960 1x 36.9 58.1 37.5 github github
StreamYOLO-l 600×960 2x 34.6 56.3 34.7 github github
StreamYOLO-l 600×960 still 39.4 60.0 40.2 github github

Quick Start

Dataset preparation

You can download Argoverse-1.1 full dataset and annotation from HERE and unzip it.

The folder structure should be organized as follows before our processing.

StreamYOLO
├── exps
├── tools
├── yolox
├── data
│   ├── Argoverse-1.1
│   │   ├── annotations
│   │       ├── tracking
│   │           ├── train
│   │           ├── val
│   │           ├── test
│   ├── Argoverse-HD
│   │   ├── annotations
│   │       ├── test-meta.json
│   │       ├── train.json
│   │       ├── val.json

The hash strings represent different video sequences in Argoverse, and ring_front_center is one of the sensors for that sequence. Argoverse-HD annotations correspond to images from this sensor. Information from other sensors (other ring cameras or LiDAR) is not used, but our framework can be also extended to these modalities or to a multi-modality setting.

Installation
# basic python libraries
conda create --name streamyolo python=3.7

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

pip3 install yolox==0.3
git clone [email protected]:yancie-yjr/StreamYOLO.git

cd StreamYOLO/

# add StreamYOLO to PYTHONPATH and add this line to ~/.bashrc or ~/.zshrc (change the file accordingly)
ADDPATH=$(pwd)
echo export PYTHONPATH=$PYTHONPATH:$ADDPATH >> ~/.bashrc
source ~/.bashrc

# Installing `mmcv` for the official sAP evaluation:
# Please replace `{cu_version}` and ``{torch_version}`` with the versions you are currently using.
# You will get import or runtime errors if the versions are incorrect.
pip install mmcv-full==1.1.5 -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
Reproduce our results on Argoverse-HD

Step1. Prepare COCO dataset

cd <StreamYOLO_HOME>
ln -s /path/to/your/Argoverse-1.1 ./data/Argoverse-1.1
ln -s /path/to/your/Argoverse-HD ./data/Argoverse-HD

Step2. Reproduce our results on Argoverse:

python tools/train.py -f cfgs/m_s50_onex_dfp_tal_flip.py -d 8 -b 32 -c [/path/to/your/coco_pretrained_path] -o --fp16
  • -d: number of gpu devices.
  • -b: total batch size, the recommended number for -b is num-gpu * 8.
  • --fp16: mixed precision training.
  • -c: model checkpoint path.
Offline Evaluation

We support batch testing for fast evaluation:

python tools/eval.py -f  cfgs/l_s50_onex_dfp_tal_flip.py -c [/path/to/your/model_path] -b 64 -d 8 --conf 0.01 [--fp16] [--fuse]
  • --fuse: fuse conv and bn.
  • -d: number of GPUs used for evaluation. DEFAULT: All GPUs available will be used.
  • -b: total batch size across on all GPUs.
  • -c: model checkpoint path.
  • --conf: NMS threshold. If using 0.001, the performance will further improve by 0.2~0.3 sAP.
Online Evaluation

We modify the online evaluation from sAP

Please use 1 V100 GPU to test the performance since other GPUs with low computing power will trigger non-real-time results!!!!!!!!

cd sAP/streamyolo
bash streamyolo.sh

Citation

Please cite the following paper if this repo helps your research:

@InProceedings{streamyolo,
    author    = {Yang, Jinrong and Liu, Songtao and Li, Zeming and Li, Xiaoping and Sun, Jian},
    title     = {Real-time Object Detection for Streaming Perception},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    year      = {2022}
}

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Comments
  • when will the readme document be completed

    when will the readme document be completed

    Hi, @GOATmessi7 @yancie-yjr great wokrs. Can you enrich the readme about datasets preparing、how to training & validation and so on. hope to finish it soon. thanks

    opened by SmallMunich 1
  • ModuleNotFoundError: No module named 'exps'

    ModuleNotFoundError: No module named 'exps'

    hi everyone, I got this issue ...File "cfgs/m_s50_onex_dfp_tal_flip.py", line 189, in get_trainer from exps.train_utils.double_trainer import Trainer ModuleNotFoundError: No module named 'exps'

    Actually I ran code on local I got this error but when I try "echo export PYTHONPATH=$PYTHONPATH:$ADDPATH >> " it worked. But as you can guess my local GPU didn't enough for training. And I established everything on colab but this time "echo export..." didn't save me.

    opened by Tezcan98 3
  • A small bug in README about Dataset Prep.

    A small bug in README about Dataset Prep.

    For Developers

    Hi! When reproducing your results on Argoverse-HD, I found that the directory structure you provided in Quick Start - Dataset preparation section doesn't match the original directory structure of Argoverse-HD dataset, as well as your code required. The directory structure in Quick Start - Dataset preparation section:

    StreamYOLO
    ├── exps
    ├── tools
    ├── yolox
    ├── data
    │   ├── Argoverse-1.1
    │   │   ├── annotations
    │   │       ├── tracking
    │   │           ├── train
    │   │           ├── val
    │   │           ├── test
    │   ├── Argoverse-HD
    │   │   ├── annotations
    │   │       ├── test-meta.json
    │   │       ├── train.json
    │   │       ├── val.json
    

    should be edited as:

    StreamYOLO
    ├── exps
    ├── tools
    ├── yolox
    ├── data
    │   ├── Argoverse-1.1
    │   │   ├── tracking
    │   │       ├── train
    │   │       ├── val
    │   │       ├── test
    │   ├── Argoverse-HD
    │   │   ├── annotations
    │   │       ├── test-meta.json
    │   │       ├── train.json
    │   │       ├── val.json
    

    which matches the directory structure of the Argoverse-HD dataset: Screenshot 2022-09-21 151703.png

    For Stargazers

    BTW, if anyone manually modifies the directory structure to fit the one provided in README, an AssertionError will occur: (some parts of file path was edited)

    AssertionError: Caught AssertionError in DataLoader worker process 0.
    Original Traceback (most recent call last):
      File "%HOME%\anaconda3\envs\streamyolo\lib\site-packages\torch\utils\data\_utils\worker.py", line 198, in _worker_loop
        data = fetcher.fetch(index)
      File "%HOME%\anaconda3\envs\streamyolo\lib\site-packages\torch\utils\data\_utils\fetch.py", line 44, in fetch
        data = [self.dataset[idx] for idx in possibly_batched_index]
      File "%HOME%\anaconda3\envs\streamyolo\lib\site-packages\torch\utils\data\_utils\fetch.py", line 44, in <listcomp>
        data = [self.dataset[idx] for idx in possibly_batched_index]
      File "%HOME%\anaconda3\envs\streamyolo\lib\site-packages\yolox\data\datasets\datasets_wrapper.py", line 110, in wrapper
        ret_val = getitem_fn(self, index)
      File "%WORKSPACE%\StreamYOLO\exps\data\tal_flip_mosaicdetection.py", line 255, in __getitem__
        img, support_img, label, support_label, img_info, id_ = self._dataset.pull_item(idx)
      File "%WORKSPACE%\StreamYOLO\exps\dataset\tal_flip_one_future_argoversedataset.py", line 227, in pull_item
        img = self.load_resized_img(index)
      File "%WORKSPACE%\StreamYOLO\exps\dataset\tal_flip_one_future_argoversedataset.py", line 180, in load_resized_img
        img = self.load_image(index)
      File "%WORKSPACE%\StreamYOLO\exps\dataset\tal_flip_one_future_argoversedataset.py", line 196, in load_image
        assert img is not None
    AssertionError
    

    If anyone gets the similar error message, the content in For Developers may be helpful.

    opened by jingwenchong 6
  • Figure 2 in the paper

    Figure 2 in the paper

    Hi, I have read your paper.

    I have a question in figure 2.

    On the page3 in the paper, you wrote the expression "the output y1 of the frame F1 is matched and evaluated with the ground truth of F3 and the result of F2 is missed" about Figure 2.

    I understood like that expression mean y1 is the output of the none-real-time detectors of frame F1.

    But, before the frame F3 is received, the frame F2 is received in first.

    So I can't understand that point and I also want to ask when the output of the frame f0 come out.

    opened by wpdlatm1452 1
  • How can i save the detection result?

    How can i save the detection result?

    Hi, thank you for suggesting your nice code.

    I trained the model using Argoverse dataset following your readme.

    I want to run demo and save detection results (image or video), how can i do that?

    thank you.

    opened by daminlee1 0
Owner
Jinrong Yang
Research: Object detection, Deep learning
Jinrong Yang
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Xi Dongbo 78 Nov 29, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022