a pytorch implementation of auto-punctuation learned character by character

Overview

Learning Auto-Punctuation by Reading Engadget Articles

DOI

Link to Other of my work

🌟 Deep Learning Notes: A collection of my notes going from basic multi-layer perceptron to convNet and LSTMs, Tensorflow to pyTorch.

💥 Deep Learning Papers TLDR; A growing collection of my notes on deep learning papers! So far covers the top papers from this years ICLR.

Overview

This project trains a bi-directional GRU to learn how to automatically punctuate a sentence by reading blog posts from Engadget.com character by character. The set of operation it learns include:

capitalization: <cap>
         comma:  ,
        period:  .
   dollar sign:  $
     semicolon:  ;
         colon:  :
  single quote:  '
  double quote:  "
  no operation: <nop>

Performance

After 24 epochs of training, the network achieves the following performance on the test-set:

    Test P/R After 24 Epochs 
    =================================
    Key: <nop>	Prec:  97.1%	Recall:  97.8%	F-Score:  97.4%
    Key: <cap>	Prec:  68.6%	Recall:  57.8%	F-Score:  62.7%
    Key:   ,	Prec:  30.8%	Recall:  30.9%	F-Score:  30.9%
    Key:   .	Prec:  43.7%	Recall:  38.3%	F-Score:  40.8%
    Key:   '	Prec:  76.9%	Recall:  80.2%	F-Score:  78.5%
    Key:   :	Prec:  10.3%	Recall:   6.1%	F-Score:   7.7%
    Key:   "	Prec:  26.9%	Recall:  45.1%	F-Score:  33.7%
    Key:   $	Prec:  64.3%	Recall:  61.6%	F-Score:  62.9%
    Key:   ;	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   ?	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   !	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A

As a frist attempt, the performance is pretty good! Especially since I did not fine tune with a smaller step size afterward, and the Engadget dataset used here is small in size (4MB total).

Double the training gives a small improvement.

Table 2. After 48 epochs of training

    Test P/R  Epoch 48 Batch 380
    =================================
    Key: <nop>	Prec:  97.1%	Recall:  98.0%	F-Score:  97.6%
    Key: <cap>	Prec:  73.2%	Recall:  58.9%	F-Score:  65.3%
    Key:   ,	Prec:  35.7%	Recall:  32.2%	F-Score:  33.9%
    Key:   .	Prec:  45.0%	Recall:  39.7%	F-Score:  42.2%
    Key:   '	Prec:  81.7%	Recall:  83.4%	F-Score:  82.5%
    Key:   :	Prec:  12.1%	Recall:  10.8%	F-Score:  11.4%
    Key:   "	Prec:  25.2%	Recall:  44.8%	F-Score:  32.3%
    Key:   $	Prec:  51.4%	Recall:  87.8%	F-Score:  64.9%
    Key:   ;	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   ?	Prec:   5.6%	Recall:   4.8%	F-Score:   5.1%
    Key:   !	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A

Usage

If you feel like using some of the code, you can cite this project via

@article{deeppunc,
  title={Deep-Auto-Punctuation},
  author={Yang, Ge},
  journal={arxiv},
  year={2017},
  doi={10.5281/zenodo.438358}
  url={https://zenodo.org/record/438358;
       https://github.com/episodeyang/deep-auto-punctuation}
}

To run

First unzip the engagdget data into folder ./engadget_data by running

tar -xvzf engadget_data.tar.gz

and then open up the notebook Learning Punctuations by reading Engadget.pynb, and you can just execute.

To view the reporting, open a visdom server by running

python visdom.server

and then go to http://localhost:8097

Requirements

pytorch numpy matplotlib tqdm bs4

Model Setup and Considerations

The initial setup I began with was a single uni-direction GRU, with input domain [A-z0-9] and output domain of the ops listed above. My hope at that time was to simply train the RNN to learn correcponding operations. A few things jumped out during the experiment:

  1. Use bi-directional GRU. with the uni-direction GRU, the network quickly learned capitalization of terms, but it had difficulties with single quote. In words like "I'm", "won't", there are simply too much ambiguity from reading only the forward part of the word. The network didn't have enough information to properly infer such punctuations.

    So I decided to change the uni-direction GRU to bi-direction GRU. The result is much better prediction for single quotes in concatenations.

    the network is still training, but the precision and recall of single quote is nowt close to 80%.

    This use of bi-directional GRU is standard in NLP processes. But it is nice to experience first-hand the difference in performance and training.

    A side effect of this switch is that the network now runs almost 2x slower. This leads to the next item in this list:

  2. Use the smallest model possible. At the very begining, my input embeding was borrowed from the Shakespeare model, so the input space include both capital alphabet as well as lower-case ones. What I didn't realize was that I didn't need the capital cases because all inputs were lower-case.

    So when the training became painfully slow after I switch to bi-directional GRU, I looked for ways to make the training faster. A look at the input embeding made it obvious that half of the embedding space wasn't needed.

    Removing the lower case bases made the traing around 3x faster. This is a rough estimate since I also decided to redownload the data set at the same time on the same machine.

  3. Text formatting. Proper formating of input text crawed from Engadget.com was crucial, especially because the occurrence of a lot of the puncuation was low and this is a character-level model. You can take a look at the crawed text inside ./engadget_data_tar.gz.

  4. Async and Multi-process crawing is much much faster. I initially wrote the engadget crawer as a single threaded class. Because the python requests library is synchronous, the crawler spent virtually all time waiting for the GET requests.

    This could be made a lot faster by parallelizing the crawling, or use proper async pattern.

    This thought came to me pretty late during the second crawl so I did not implement it. But for future work, parallel and async crawler is going to be on the todo list.

  5. Using Precision/Recall in a multi-class scenario. The setup makes the reasonable assumption that each operation can only be applied mutually exclusively. The accuracy metric used here are precision/recall and the F-score, both commonly used in the literature1, 2. The P/R and F-score are implemented according to wikipedia 3, 4.

    example accuracy report:

    Epoch 0 Batch 400 Test P/R
    =================================
    Key: <nop>	Prec:  99.1%	Recall:  96.6%	F-Score:  97.9%
    Key:   ,	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key: <cap>	Prec: 100.0%	Recall:  75.0%	F-Score:  85.7%
    Key:   .	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   '	Prec:  66.7%	Recall: 100.0%	F-Score:  80.0%
    
    
    true_p:	{'<nop>': 114, '<cap>': 3, "'": 2}
    p:	{'<nop>': 118, '<cap>': 4, "'": 2}
    all_p:	{'<nop>': 115, ',': 2, '<cap>': 3, '.': 1, "'": 3}
    
    400it [06:07,  1.33s/it]
    
  6. Hidden Layer initialization: In the past I've found it was easier for the neural network to generate good results when both the training and the generation starts with a zero initial state. In this case because we are computing time limited, I zero the hidden layer at the begining of each file.

  7. Mini-batches and Padding: During training, I first sort the entire training set by the length of each file (there are 45k of them) and arrange them in batches, so that files inside each batch are roughly similar size, and only minimal padding is needed. Sometimes the file becomes too long. In that case I use data.fuzzy_chunk_length() to calculate a good chunk length with heuristics. The result is mostly no padding during most of the trainings.

    Going from having no mini-batch to having a minibatch of 128, the time per batch hasn't changed much. The accuracy report above shows the training result after 24 epochs.

Data and Cross-Validation

The entire dataset is composed of around 50k blog posts from engadget. I randomly selected 49k of these as my training set, 50 as my validation set, and around 0.5k as my test set. The training is a bit slow on an Intel i7 desktop, averaging 1.5s/file depending on the length of the file. As a result, it takes about a day to go through the entire training set.

Todo:

All done.

Done:

  • execute demo test after training
  • add final performance metric
  • implement minibatch
  • a generative demo
  • add validation (once an hour or so)
  • add accuracy metric, use precision/recall.
  • change to bi-directional GRU
  • get data
  • Add temperature to generator
  • add self-feeding generator
  • get training to work
  • use optim and Adam

References

1: https://www.aclweb.org/anthology/D/D16/D16-1111.pdf
2: https://phon.ioc.ee/dokuwiki/lib/exe/fetch.php?media=people:tanel:interspeech2015-paper-punct.pdf
3: https://en.wikipedia.org/wiki/precision_and_recall
4: https://en.wikipedia.org/wiki/F1_score

Comments
  • Can't run example training

    Can't run example training

    Hi there,

    As a first contact with your project I am trying to run it 'as is', but it seems I can't run a proper training with the example notebook.

    All preliminary steps work fine, but when launching the training step, the only output I get is 0it [00:00, ?it/s], repeatedly, and nothing further is happening either on logs or in the directories (nothing is saved).

    By the way, I believe some indentation is missed for the last 2 lines of the block (need to be inside the for loop for batch_ind to be defined).

    I managed to test the pretrained models though.

    Thanks for your implementation anyways, and thanks in advance for your reply! Hope to get the code running properly soon :)

    F

    opened by francoishernandez 5
  • view size not compatible with input tensor size and stride

    view size not compatible with input tensor size and stride

    Traceback (most recent call last): File "train.py", line 71, in <module> egdt.forward(input_, target_) File "/home/flow/deep-auto-punctuation/model.py", line 90, in forward self.next_(input_batch) File "/home/flow/deep-auto-punctuation/model.py", line 111, in next_ self.output, self.hidden = self.model(self.embed(input_text), self.hidden) File "/home/flow/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__ result = self.forward(*input, **kwargs) File "/home/flow/deep-auto-punctuation/model.py", line 32, in forward output = self.decoder(gru_output.view(-1, self.hidden_size * self.bi_mul)) RuntimeError: invalid argument 2: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Call .contiguous() before .view(). at /opt/conda/conda-bld/pytorch_1533672544752/work/aten/src/TH/generic/THTensor.cpp:237

    Any idea what could be causing this?

    opened by sebastianvermaas 3
  • input string has differnt length from punctuation list

    input string has differnt length from punctuation list

    Hi, i've tried your code and got assertion error in data module due to length of input string and punctuation was not the same. I loaded your latest model without trained it again. do you have any advice ?

    gits

    opened by laluarif93 0
  •  Adding a license

    Adding a license

    Hello,

    Would you be willing to add a license to this repository? See: https://opensource.stackexchange.com/questions/1720/what-can-i-assume-if-a-publicly-published-project-has-no-license

    Thank you.

    opened by Tejash241 0
  • Issue with visdom.server

    Issue with visdom.server

    Hi there

    Brilliant work I looked up everywhere for a soluton for that but didn't solve the issue

    I keep getting the error message "C:\Users\David\Anaconda3\lib\site-packages\visdom\server.py:39: DeprecationWarning: zmq.eventloop.ioloop is deprecated in pyzmq 17. pyzmq now works with default tornado and asyncio eventloops."

    I try all the combinations of pip install visdom and conda install visdom etc I didn't succeed in compiling your work using the command make run

    Should I use a specific version of visdom or python to use your work?

    Thanks so much for your help Dave

    opened by Best-Trading-Indicator 3
  • Training size too big..Any suggestions?

    Training size too big..Any suggestions?

    Hi! I really am interested in testing and running through your code. Everything is working except for one thing.. When just before training, it says Too many values to unpack. Any suggestions on how to fix this issue? or any smaller size training sets you might know of?

    screen shot 2018-03-02 at 6 59 50 pm

    PS: it says python 2 but my kernel is python 3.

    opened by jlvasquezcollado 2
Releases(v1.0.0)
Owner
Ge Yang
Ge Yang
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023