A python library for implementing a recommender system

Overview

python-recsys

A python library for implementing a recommender system.

Installation

Dependencies

python-recsys is build on top of Divisi2, with csc-pysparse (Divisi2 also requires NumPy, and uses Networkx).

python-recsys also requires SciPy.

To install the dependencies do something like this (Ubuntu):

sudo apt-get install python-scipy python-numpy
sudo apt-get install python-pip
sudo pip install csc-pysparse networkx divisi2

# If you don't have pip installed then do:
# sudo easy_install csc-pysparse
# sudo easy_install networkx
# sudo easy_install divisi2

Download

Download python-recsys from github.

Install

tar xvfz python-recsys.tar.gz
cd python-recsys
sudo python setup.py install

Example

  1. Load Movielens dataset:
from recsys.algorithm.factorize import SVD
svd = SVD()
svd.load_data(filename='./data/movielens/ratings.dat',
            sep='::',
            format={'col':0, 'row':1, 'value':2, 'ids': int})
  1. Compute Singular Value Decomposition (SVD), M=U Sigma V^t:
k = 100
svd.compute(k=k,
            min_values=10,
            pre_normalize=None,
            mean_center=True,
            post_normalize=True,
            savefile='/tmp/movielens')
  1. Get similarity between two movies:
ITEMID1 = 1    # Toy Story (1995)
ITEMID2 = 2355 # A bug's life (1998)

svd.similarity(ITEMID1, ITEMID2)
# 0.67706936677315799
  1. Get movies similar to Toy Story:
svd.similar(ITEMID1)

# Returns: <ITEMID, Cosine Similarity Value>
[(1,    0.99999999999999978), # Toy Story
 (3114, 0.87060391051018071), # Toy Story 2
 (2355, 0.67706936677315799), # A bug's life
 (588,  0.5807351496754426),  # Aladdin
 (595,  0.46031829709743477), # Beauty and the Beast
 (1907, 0.44589398718134365), # Mulan
 (364,  0.42908159895574161), # The Lion King
 (2081, 0.42566581277820803), # The Little Mermaid
 (3396, 0.42474056361935913), # The Muppet Movie
 (2761, 0.40439361857585354)] # The Iron Giant
  1. Predict the rating a user (USERID) would give to a movie (ITEMID):
MIN_RATING = 0.0
MAX_RATING = 5.0
ITEMID = 1
USERID = 1

svd.predict(ITEMID, USERID, MIN_RATING, MAX_RATING)
# Predicted value 5.0

svd.get_matrix().value(ITEMID, USERID)
# Real value 5.0
  1. Recommend (non-rated) movies to a user:
svd.recommend(USERID, is_row=False) #cols are users and rows are items, thus we set is_row=False

# Returns: <ITEMID, Predicted Rating>
[(2905, 5.2133848204673416), # Shaggy D.A., The
 (318,  5.2052108435956033), # Shawshank Redemption, The
 (2019, 5.1037438278755474), # Seven Samurai (The Magnificent Seven)
 (1178, 5.0962756861447023), # Paths of Glory (1957)
 (904,  5.0771405690055724), # Rear Window (1954)
 (1250, 5.0744156653222436), # Bridge on the River Kwai, The
 (858,  5.0650911066862907), # Godfather, The
 (922,  5.0605327279819408), # Sunset Blvd.
 (1198, 5.0554543765500419), # Raiders of the Lost Ark
 (1148, 5.0548789542105332)] # Wrong Trousers, The
  1. Which users should see Toy Story? (e.g. which users -that have not rated Toy Story- would give it a high rating?)
svd.recommend(ITEMID)

# Returns: <USERID, Predicted Rating>
[(283,  5.716264440514446),
 (3604, 5.6471765418323141),
 (5056, 5.6218800339214496),
 (446,  5.5707524860615738),
 (3902, 5.5494529168484652),
 (4634, 5.51643364021289),
 (3324, 5.5138903299082802),
 (4801, 5.4947999354188548),
 (1131, 5.4941438045650068),
 (2339, 5.4916048051511659)]

Documentation

Documentation and examples available here.

To create the HTML documentation files from doc/source do:

cd doc
make html

HTML files are created here:

doc/build/html/index.html
Owner
Oscar Celma
I used to code. Now I barely remember how to do it
Oscar Celma
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022