Crosslingual Segmental Language Model

Related tags

Deep LearningXLSLM
Overview

Crosslingual Segmental Language Model

This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely low-resource languages (2021, C.M. Downey, Shannon Drizin, Levon Haroutunian, and Shivin Thukral). The code here is a modified version of the repository from the original MSLM paper. The mslm package can be used to train and use Segmental Language Models.

In this repository, we additionally make available our preparation of the AmericasNLP 2021 multilingual dataset (see Data/AmericasNLP) and the target K'iche' data (Data/GlobalClassroom).

Paper Results

The results from the accompanying paper can be found in the Output directory. *.csv files include statistics from the training run, *.out contain the model output for the entire corpus, *.score contain the segmentation scores of the model output.

The results from the October 2021 pre-print (which we will refer to as Experiment Set A) are reproducible on commit 2b89575. We will consider this the official commit of the October 2021 pre-print.

Usage

The top-level scripts for training and experimentation can be found in RunScripts. Almost all functionality is run through the __main__.py script in the mslm package, which can either train or evaluate/use a model. The PyTorch modules for building SLMs can be found in mslm.segmental_lm, modules for the span-masking Transformer are in mslm.segmental_transformer, and modules for sequence lattice-based computations are in mslm.lattice. The main script takes in a configuration object to set most parameters for model training and use (see mslm.mslm_config). For information on the arguments to the main script:

python -m mslm --help

Environment setup

pip install -r requirements.txt

This code requires Python >= 3.6

Training

./RunScripts/run_mslm.sh 
    
     
     

     
    
   

or

python -m mslm --input_file 
   
     \
    --model_path 
    
      \
    --mode train \
    --config_file 
     
       \
    --dev_file 
      
        \
    [--preexisting]

      
     
    
   

Evaluation

./RunScripts/eval_mslm.sh 
    
     
      
      

      
     
    
   

Where is a text file containing all of the words from the training set

Owner
C.M. Downey
PhD Student in Computational Linguistics / NLP
C.M. Downey
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
End-to-end image segmentation kit based on PaddlePaddle.

English | 简体中文 PaddleSeg PaddleSeg has released the new version including the following features: Our team won the 6.2k Jan 02, 2023

Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021