Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

Overview

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video

Qualtitative result Paper teaser video
aa bb

Introduction

This repository is the official Pytorch implementation of Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video. The base codes are largely borrowed from VIBE. Find more qualitative results here.

Installation

TCMR is tested on Ubuntu 16.04 with Pytorch 1.4 and Python 3.7.10. You may need sudo privilege for the installation.

source scripts/install_pip.sh

Quick demo

  • Download the pre-trained demo TCMR and required data by below command and download SMPL layers from here (male&female) and here (neutral). Put SMPL layers (pkl files) under ${ROOT}/data/base_data/.
source scripts/get_base_data.sh
  • Run demo with options (e.g. render on plain background). See more option details in bottom lines of demo.py.
  • A video overlayed with rendered meshes will be saved in ${ROOT}/output/demo_output/.
python demo.py --vid_file demo.mp4 --gpu 0 

Results

Here I report the performance of TCMR.

table table

See our paper for more details.

Running TCMR

Download pre-processed data (except InstaVariety dataset) from here. You may also download datasets from sources and pre-process yourself. Refer to this. Put SMPL layers (pkl files) under ${ROOT}/data/base_data/.

The data directory structure should follow the below hierarchy.

${ROOT}  
|-- data  
|   |-- base_data  
|   |-- preprocessed_data  
|   |-- pretrained_models

Evaluation

  • Download pre-trained TCMR weights from here.
  • Run the evaluation code with a corresponding config file to reproduce the performance in the tables of our paper.
# dataset: 3dpw, mpii3d, h36m 
python evaluate.py --dataset 3dpw --cfg ./configs/repr_table4_3dpw_model.yaml --gpu 0 
  • You may test options such as average filtering and rendering. See the bottom lines of ${ROOT}/lib/core/config.py.
  • We checked rendering results of TCMR on 3DPW validation and test sets.

Reproduction (Training)

  • Run the training code with a corresponding config file to reproduce the performance in the tables of our paper.
# training outputs are saved in `experiments` directory
# mkdir experiments
python train.py --cfg ./configs/repr_table4_3dpw_model.yaml --gpu 0 
  • Evaluate the trained TCMR (either checkpoint.pth.tar or model_best.pth.tar) on a target dataset.
  • You may test the motion discriminator introduced in VIBE by uncommenting the codes that have exclude motion discriminator notations.
  • We do not release NeuralAnnot SMPL annotations of Human36M used in our paper yet. Thus the performance in Table 6 may be slightly different with the paper.

Reference

@InProceedings{choi2020beyond,
  title={Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video},
  author={Choi, Hongsuk and Moon, Gyeongsik and Lee, Kyoung Mu},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}
  year={2021}
}
Owner
Hongsuk Choi
Research area: 3D human pose, shape, and mesh estimation
Hongsuk Choi
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022