[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

Overview

LBYL-Net

This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021.


Getting Started

Prerequisites

  • python 3.7
  • pytorch 10.0
  • cuda 10.0
  • gcc 4.92 or above

Installation

  1. Then clone the repo and install dependencies.
    git clone https://github.com/svip-lab/LBYLNet.git
    cd LBYLNet
    pip install requirements.txt 
  2. You also need to install our landmark feature convolution:
    cd ext
    git clone https://github.com/hbb1/landmarkconv.git
    cd landmarkconv/lib/layers
    python setup.py install --user
  3. We follow dataset structure DMS and FAOA. For convience, we have pack them togather, including ReferitGame, RefCOCO, RefCOCO+, RefCOCOg.
    bash data/refer/download_data.sh ./data/refer
  4. download the generated index files and place them in ./data/refer. Available at [Gdrive], [One Drive] .
  5. download the pretained model of YOLOv3.
    wget -P ext https://pjreddie.com/media/files/yolov3.weights

Training and Evaluation

By default, we use 2 gpus and batchsize 64 with DDP (distributed data-parallel). We have provided several configurations and training log for reproducing our results. If you want to use different hyperparameters or models, you may create configs for yourself. Here are examples:

  • For distributed training with gpus :

    CUDA_VISIBLE_DEVICES=0,1 python train.py lbyl_lstm_referit_batch64  --workers 8 --distributed --world_size 1  --dist_url "tcp://127.0.0.1:60006"
  • If you use single gpu or won't use distributed training (make sure to adjust the batchsize in the corresponding config file to match your devices):

    CUDA_VISIBLE_DEVICES=0, python train.py lbyl_lstm_referit_batch64  --workers 8
  • For evaluation:

    CUDA_VISIBLE_DEVICES=0, python evaluate.py lbyl_lstm_referit_batch64 --testiter 100 --split val

Trained Models

We provide the our retrained models with this re-organized codebase and provide their checkpoints and logs for reproducing the results. To use our trained models, download them from the [Gdrive] and save them into directory cache. Then the file path is expected to be <LBYLNet dir>/cache/nnet/<config>/<dataset>/<config>_100.pkl

Notice: The reproduced performances are occassionally higher or lower (within a reasonable range) than the results reported in the paper.

In this repo, we provide the peformance of our LBYL-Nets below. You can also find the details on <LBYLNet dir>/results and <LBYLNet dir>/logs.

  • Performance on ReferitGame ([email protected]).

    Dataset Langauge Split Papar Reproduce
    ReferitGame LSTM test 65.48 65.98
    BERT test 67.47 68.48
  • Performance on RefCOCO ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCO LSTM
    testA 82.18 82.48
    testB 71.91 71.76
    BERT
    testA 82.91 82.82
    testB 74.15 72.82
  • Performance on RefCOCO+ ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCO+ LSTM val 66.64 66.71
    testA 73.21 72.63
    testB 56.23 55.88
    BERT val 68.64 68.76
    testA 73.38 73.73
    testB 59.49 59.62
  • Performance on RefCOCOg ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCOg LSTM val 58.72 60.03
    BERT val 62.70 63.20

Demo

We also provide demo scripts to test if the repo is corretly installed. After installing the repo and download the pretained weights, you should be able to use the LBYL-Net to ground your own images.

python demo.py

you can change the model, image or phrase in the demo.py. You will see the output image in imgs/demo_out.jpg.

#!/usr/bin/env python
import cv2
import torch
from core.test.test import _visualize
from core.groundors import Net 
# pick one model
cfg_file = "lbyl_bert_unc+_batch64"
detector = Net(cfg_file, iter=100)
# inference
image = cv2.imread('imgs/demo.jpeg')
phrase = 'the green gaint'
bbox = detector(image, phrase)
_visualize(image, pred_bbox=bbox, phrase=phrase, save_path='imgs/demo_out.jpg', color=(1, 174, 245), draw_phrase=True)

Input:

Output:


Acknowledgements

This repo is organized as CornerNet-Lite and the code is partially from FAOA (e.g. data preparation) and MAttNet (e.g. LSTM). We thank for their great works.


Citations:

If you use any part of this repo in your research, please cite our paper:

@InProceedings{huang2021look,
      title={Look Before You Leap: Learning Landmark Features for One-Stage Visual Grounding}, 
      author={Huang, Binbin and Lian, Dongze and Luo, Weixin and Gao, Shenghua},
      booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      month = {June},
      year={2021},
}
Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022